Math, asked by vivogif, 1 year ago

answer fast please please

Attachments:

Answers

Answered by sivaprasath
0
Solution :

____________________________________________________________

Given :

To find a & b,

where they are rational number in,

 \frac{ \sqrt{2} +  \sqrt{3} }{3 \sqrt{2} -  2\sqrt{3}  }  = a - b \sqrt{3}


____________________________________________________________

By taking conjugate,

We get,.

 \frac{ \sqrt{2} +  \sqrt{3} }{3 \sqrt{2} -  2\sqrt{3}  } ( \frac{3 \sqrt{2} + 2 \sqrt{3} }{3 \sqrt{2} + 2 \sqrt{3}}) = a - b\sqrt{3}

 \frac{(\sqrt{2} + \sqrt{3})(3 \sqrt{2} + 2\sqrt{3})  }{(3 \sqrt{2} - 2 \sqrt{3} )(3 \sqrt{2} + 2 \sqrt{3})}  = a - b\sqrt{3}

 \frac{ \sqrt{2}(3 \sqrt{2} ) +  \sqrt{2}(2 \sqrt{3} ) +  \sqrt{3}(3 \sqrt{2} ) +  \sqrt{3} (2 \sqrt{3} ) }{(3 \sqrt{2} )^2 - (2 \sqrt{3})^2} = a - b\sqrt{3}

 \frac{ 6 +  2 \sqrt{6}  + 3 \sqrt{6} + 6 ) }{18 - 12 } = a - b\sqrt{3}

 \frac{12 + 5 \sqrt{6} }{6}  = a - b\sqrt{3}

 \frac{12}{6} +  \frac{5 \sqrt{6} }{6}  = a - b\sqrt{3}

2 +  \frac{5 \sqrt{6} }{( \sqrt{6} )^2}  = a - b\sqrt{3}

2 +  \frac{5}{ \sqrt{6} }  = a - b\sqrt{3}

∴ a - b√3 = 2 +  \frac{5}{ \sqrt{6} }

⇒ ∴ a = 2

&

⇒ b√3 =  \frac{5}{ \sqrt{6} }

⇒ b = \frac{5}{ \sqrt{6} }( \frac{1}{ \sqrt{3} } )

⇒ b =  \frac{5}{ \sqrt{18} }

____________________________________________________________

                                        Hope it Helps !!

⇒ Mark as Brainliest,.


sivaprasath: Neglect that , A
DaIncredible: hey, but in the final equation 2 + 5√6 is coming (not √3)
DaIncredible: which should be come
sivaprasath: b = -,. forgot to type -,.
sivaprasath: I wrote 2 + 5√6, check it,.clearly,.
Answered by Ramanujmani
1
heya....

i think something is mistake in your questions

right questions is like that:-

find a and b where they are irrational no. in
 \frac{ \sqrt{2} +  \sqrt{3}  }{3 \sqrt{2}  - 2 \sqrt{3}  }  = a - b \sqrt{6}




 \frac{ \sqrt{2} +  \sqrt{3}  }{3 \sqrt{2} - 2 \sqrt{3}  }  \\  \\  =  >  \frac{( \sqrt{2} +  \sqrt{3}  )}{3 \sqrt{2} - 2 \sqrt{3}  }  \times  \frac{3 \sqrt{2}  + 2 \sqrt{3} }{3 \sqrt{2}  + 2 \sqrt{3} }  \\  \\   =  >  \frac{6 + 2 \sqrt{6} +3 \sqrt{6}  + 6  }{18 - 12}  \\  \\  =  >  \frac{12 + 5 \sqrt{6} }{6}  \\  \\  =  >  \frac{12}{6}  +  \frac{5 \sqrt{6} }{6}  \\  \\  =  > 2 +  \frac{5}{ \sqrt{6} }


NOW,

on comparing L.H.S = R.H.S

a = 2 ,b = -5/√6

Ramanujmani: :-)
Similar questions