answer fast quick please
Answers
Answer:
T₁ = 25 (√3 - 1 )
T₂ =25 (√6 - √2 ) / 2
Explanation:
To find ------> Tensions in the strings
Solution------> We know that ,
Sin ( A + B ) = SinA CosB + CosA SinB
Putting A = 45° and B = 30° , we get ,
Sin ( 45° + 30° ) = Sin45° Cos30° + Cos45° Sin30°
= ( 1 / √2 ) ( √3 / 2 ) + ( 1/√2 ) ( 1/2 )
= √3 / 2√2 + 1 / 2√2
= ( √3 + 1 ) / 2√2
Sin135° = Sin ( 180° - 45° )
= Sin 45°
= 1 /√2
Sin150° = Sin ( 180° - 30 ° )
= Sin ( 30° )
= 1/2
ATQ, Tension in the strings are T₁ and T₂ and object is in rest , so by Lami's theroem ,
T₁ / Sin135° = T₂ / Sin150° = 25 / Sin75°
T₁/( 1/√2 ) = T₂/ ( 1/2 ) = 25 / (√3 + 1 ) / 2√2
=> √2 T₁ = 2 T₂ = 50√2 / ( √3 + 1 )
Now taking first and third equal we get,
√2 T₁ = 50√2 / ( √3 + 1 )
=> T₁ = 50 / ( √3 + 1 )
=> T₁ = 50 ( √3 - 1 ) / ( √3 + 1 ) ( √3 - 1 )
=> T₁ = 50 ( √3 - 1 ) / (√3 )² - ( 1 )²
=> T₁ = 50 ( √3 - 1 ) / ( 3 - 1 )
=> T₁ = 50 ( √3 - 1 ) / 2
=> T₁ = 25 ( √3 - 1 ) N
Now taking second and third equal , we get,
2 T₂ = 50√2 / ( √3 + 1 )
=> T₂ = 25√2 / ( √3 + 1 )
=> T₂ = 25√2 ( √3 - 1 ) / ( √3 + 1 ) ( √3 - 1 )
=> T₂ = 25√2 ( √3 - 1 ) / ( √3 )² - ( 1 )²
=> T₂ = 25√2 (√3 - 1 ) / ( 3 - 1 )
=> T₂ = 25 ( √6 - √2 ) / 2 N