Answer fast ......
Spam = Reported
Answers
★ Given :
- PQR = 40°
- PRQ = 20°
- SRQ = 40°
- SQR = 20°
★ To Prove :
- ∆PQR ∆SRQ
★ Solution :
In ∆PQR & ∆SRQ ,
- PQR = SRQ ( given )
- PRQ = SQR (given)
- QR = RQ ( common )
So ,
By Angle Side Angle ,
_________________________
★ Know More :
There are 4 Criteria for congruence of triangle :
- SSS - Side Side Side
- SAS - Side Angle Side
- ASA - Angle Side Angle
- RHS - Right Angle Hypotenuse Side
In , SAS and ASA congruence criteria , the intermediate angle or side is taken .
★ Given :
\angle∠ PQR = 40°
\angle∠ PRQ = 20°
\angle∠ SRQ = 40°
\angle∠ SQR = 20°
\begin{gathered} \\ \end{gathered}
★ To Prove :
∆PQR \cong≅ ∆SRQ
\begin{gathered} \\ \end{gathered}
★ Solution :
In ∆PQR & ∆SRQ ,
\angle∠ PQR = \angle∠ SRQ ( given )
\angle∠ PRQ = \angle∠ SQR (given)
QR = RQ ( common )
So ,
By Angle Side Angle ,
\rm ∆PQR \cong ∆SRQ∆PQR≅∆SRQ
\begin{gathered} \\ \end{gathered}
_________________________
★ Know More :
There are 4 Criteria for congruence of triangle :
SSS - Side Side Side
SAS - Side Angle Side
ASA - Angle Side Angle
RHS - Right Angle Hypotenuse Side
In , SAS and ASA congruence criteria , the intermediate angle or side is taken .
Step-by-step explanation:
please mark meas brainliest