Math, asked by bunny13046, 2 days ago

Answer fast with propersteps
1. Find the square root of 4.6225 using division method:
2. The length of a rectangle is 3x² +5x-1 and its width is 3x + 1. Find its perimeter.​

Answers

Answered by dhruvalt03
1

Answer:

1 = 2.15

Step-by-step explanation:

I don't know second one so sorry

Answered by mathdude500
5

\large\underline{\sf{Solution-1}}

\red{\rm :\longmapsto\: \sqrt{4.6225}}

So, using Long Division Method, we have

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\:2.15 \:\:}}}\\ {\underline{\sf{2}}}& {\sf{\:\:4.6225 \:\:}} \\{\sf{}}& \underline{\sf{\:\:4 \:  \:  \:  \:  \:  \: \:\:}} \\ {\underline{\sf{41}}}& {\sf{\:\:062 \:  \:  \: \:}} \\{\sf{}}& \underline{\sf{\:\:41 \:  \: \:}} \\ {\underline{\sf{425}}}& {\sf{\:\: \:  \: 2125 \:\:}} \\{\sf{}}& \underline{\sf{\:\: \:  \: 2125\:\:}}  \\ {\underline{\sf{}}}& {\sf{\: \:   \:0\:\:}}{\sf{}}&{\sf{\:\:\:\:}}\end{array}\end{gathered}\end{gathered}\end{gathered}

Therefore,

\red{\rm :\longmapsto\: \sqrt{4.6225} = 2.15}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \green{\large\underline{\sf{Solution-2}}}

Given that,

\red{\rm :\longmapsto\:Length_{(rectangle)} =  {3x}^{2} + 5x - 1 \: }

\red{\rm :\longmapsto\:Breadth_{(rectangle)} = 3x + 1}

We know that,

\boxed{\tt{ Perimeter_{(rectangle)} = 2[Length_{(rectangle)} + Breadth_{(rectangle)}]}}

So, on substituting the values, we get

\rm :\longmapsto\:Perimeter_{(rectangle)} = 2({3x}^{2} + 5x - 1 + 3x + 1)

\rm :\longmapsto\:Perimeter_{(rectangle)} = 2({3x}^{2} + 8x)

\rm :\longmapsto\:Perimeter_{(rectangle)} =  {6x}^{2} + 16x

\bf :\longmapsto\:Perimeter_{(rectangle)} =  2x(3x + 8)

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\tt{ Perimeter_{(square)} = 4 \times side \: }}

\boxed{\tt{ Perimeter_{(circle)} = 2\pi \: r \: }}

\boxed{\tt{ Perimeter_{(rhombus)} = 4 \times side \: }}

\boxed{\tt{ Area_{rectangle} = Length \times Breadth \: }}

\boxed{\tt{ Area_{square} =  {(side)}^{2}  \: }}

Similar questions