Math, asked by snehaaa10, 5 months ago

answer fastest nd correct ​

Attachments:

Answers

Answered by Anonymous
97

1)

\huge{\underline{\textbf{Given:-}}}

  • Ratio if Adjacent sides if Rectangle = 5:12
  • Perimeter of Rectangle

\huge{\underline{\textbf{Find:-}}}

  • Length of smaller side.

\huge{\underline{\textbf{Solution:-}}}

Let, Length of Rectangle = 5x cm

Breadth of Rectangle = 12x cm

Now, by using

 \underline{\boxed{\sf Perimeter  \: of  \: Rectangle = 2(l + b)}}

 \sf where  \small{\begin{cases} \sf Perimeter = 34cm \\  \sf l = 5x  \:cm\\  \sf b = 12x \: cm\end{cases}}

Substituting these values:-

 \implies\sf Perimeter  \: of  \: Rectangle = 2(l + b) \\  \\

 \implies\sf 34= 2(5x+12x) \\  \\

 \implies\sf 34= 2(17x) \\  \\

 \implies\sf 34= 34x\\  \\

 \implies\sf  \dfrac{34}{34}= x\\  \\

 \implies\sf 1cm= x\\  \\

Now, Smaller Side:-

> Smaller Side, Length = 5x

> 5×1 = 5cm

 \underline{\boxed{\sf \therefore Smaller \: Side  \: of  \: Rectangle \:is \:  5cm}}

Hence, Option (c) 5cm is correct.

____________________________

2)

\huge{\underline{\textbf{Given:-}}}

  • Same as above question.

\huge{\underline{\textbf{Find:-}}}

  • Length of Diagonal.

\huge{\underline{\textbf{Solution:-}}}

Here, Length = 5cm [finded above]

Breadth = 12x = 12×1 = 12cm [as x = 1cm]

Now, we know that diagonal of rectangle:-

 \huge{\underline{\boxed{\sf d^2 = l^2 + b^2}}}

 \sf where  \small{\begin{cases} \sf l = 5cm\\  \sf b = 12cm\end{cases}}

Substituting these values:-

 \dashrightarrow\sf d^2 = l^2 + b^2 \\  \\

 \dashrightarrow\sf d^2 = 5^2 + 12^2 \\  \\

 \dashrightarrow\sf d^2 = 25 + 144 \\  \\

 \dashrightarrow\sf d^2 = 169\\  \\

 \dashrightarrow\sf d=  \sqrt{169}\\  \\

 \dashrightarrow\sf d= 13cm\\  \\

 \underline{\boxed{\sf \therefore Diagonal  \: of  \: Rectangle \:is \:  13cm}}

Hence, Option (c) 13cm is correct.

Similar questions