Answer fastly for brainliest
Answers
Answer:
Option(2) - 8
Step-by-step explanation:
Given: x = (1/2 + √3)
On rationalizing, we get
⇒ (1/2 + √3) * (2 - √3)/(2 - √3)
⇒ (2 + √3)/(2)² - (√3)²
⇒ (2 + √3)/4 - 3
⇒ 2 + √3
So,
x = 2 + √3
⇒ x - 2 = √3
On Squaring both sides, we get
⇒ (x - 2)² = (√3)²
⇒ x² + 4 - 4x = 3
⇒ x² - 4x + 1 = 0
Now,
Given Expression is x³ - 2x² - 7x + 10
= x³ - 4x² + 2x² - 7x + 10
= x³ - 4x² + x - x + 2x² - 7x + 10
= x(x² - 4x + 1) + 2x² - 8x + 10
= x(0) + 2(x² - 4x + 5)
= 2(x² - 4x + 1 + 4)
= 2(4)
= 8
Hope it helps!
Substitute the specified value of x into the equation. We’ll split the terms to allow for easier computation.
x^3 = (1/2 - sqrt3)^3, which upon expanding and simplifying gives us 37/8 - 15/4*sqrt3
-2x^2 = -2(1/2 - sqrt3)^2, which upon expanding and simplifying gives us -13/2 + 2sqrt3
-7x = -7(1/2 -sqrt3), which upon expanding and simplifying gives us -7/2 + 7sqrt3
Combine all 3 terms and the constant term (10) together to obtain 37/8 + 21/4*sqrt3.