Math, asked by ssnath48, 8 months ago

answer for 2/x - 1/y = 1 / 5/x + 3/y=4

Answers

Answered by kawaderutuja8
2

Answer:

2/x-1/y=1/5/x+3/y=4

Step-by-step explanation:

2/x-1/5x=3/y+1/y=4

10-1/5x=4y=4

9/5x=4y=4

Answered by Anonymous
2

Solution:-

We have

 \rm \:  \frac{2}{x}  -  \frac{1}{y}  = 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ........(i)eq

 \rm \frac{5}{x}  +  \frac{3}{y}  = 4 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ........(ii)eq

Let

 \rm \frac{1}{x}  = u \:  \:  \: and \:  \:  \:  \:  \frac{1}{y}  = v

we get

 \rm \: 2u - v = 1 \:  \:  \:  \:  \: .....(i)eq

 \rm \: 5u + 3v = 4 \:  \:  \:  \:  \:  \:  \:  \: .......(ii)eq

Using substitution method

Take (i)eq

 \rm \: v = 2u - 1 \:  \:  \:  \:  \:  \:  \:  \: ......(iii)eq

put on (ii) eq

 \rm5u + 3(2u - 1) = 4

 \rm \: 5u + 6u - 3 = 4

 \rm \: 11u = 3 + 4

 \rm \: 11u = 7

 \rm \: u =  \frac{7}{11}

put the value of u on (iii)eq

 \rm \: v = 2 \times  \frac{7}{11}  - 1

 \rm \: v =  \frac{14}{11}  - 1

 \rm \: v =  \frac{14 - 11}{11}

 \rm \: v =  \frac{3}{11}

we get value of v and u

 \rm \: u =  \frac{7}{11}  \:  \: and \:  \: \rm \: v =  \frac{3}{11}

\rm \frac{1}{x}  =  \frac{7}{11} \:  \:  \: and \:  \:  \:  \:  \frac{1}{y}  =  \frac{3}{11}

value of x and y is

 \rm \: x =  \frac{11}{7}  \:  \: and \:  \: y =  \frac{11}{3}

Similar questions