Math, asked by renuchikki, 6 months ago

Answer for the 7th question step by step

Attachments:

Answers

Answered by Anonymous
13

Answer:

Let,

  • The Distance between point A and B = \sf d_1

  • The Distance between point B and C = \sf d_2

  • The Distance between point C and D = \sf d_3

  • The Distance between point D and A = \sf d_4

\underline{\boldsymbol{According\: to \:the\: Question\:now :}}

\dashrightarrow\:\:\sf d_1 =\sqrt{(8 - 5)^{2} +(3 + 1) ^{2}} \\  \\  \\

\dashrightarrow\:\:\sf d_1 =\sqrt{(3)^{2} +(4) ^{2}} \\  \\  \\

\dashrightarrow\:\:\sf d_1 = \sqrt{ 9 + 16}\\  \\  \\

\dashrightarrow\:\:\sf d_1 = \sqrt{25}\\  \\  \\

\dashrightarrow \:  \: \blue{\sf d_1 = 5  \: units} \\  \\  \\

____________________...

\dashrightarrow\:\:\sf d_2 =\sqrt{(4 - 8)^{2} +(0 - 3) ^{2}} \\  \\  \\

\dashrightarrow\:\:\sf d_2 =\sqrt{( - 4)^{2} +( - 3) ^{2}} \\  \\  \\

\dashrightarrow\:\:\sf d_2 =\sqrt{16 + 9} \\  \\  \\

\dashrightarrow\:\:\sf d_2 =\sqrt{25} \\  \\  \\

\dashrightarrow \:  \: \gray{ \sf d_2 = 5  \: units} \\  \\  \\

____________________...

\dashrightarrow\:\:\sf d_3 =\sqrt{(1 - 4)^{2} +( - 4 - 0) ^{2}} \\  \\  \\

\dashrightarrow\:\:\sf d_3 =\sqrt{( - 3)^{2} +( - 4) ^{2}} \\  \\  \\

\dashrightarrow\:\:\sf d_3 =\sqrt{9 +16} \\  \\  \\

\dashrightarrow\:\:\sf d_3 =\sqrt{25} \\  \\  \\

\dashrightarrow \:  \: \red{ \sf d_3 = 5  \: units} \\  \\  \\

____________________....

\dashrightarrow\:\:\sf d_4 =\sqrt{(5 - 1)^{2} +( - 1 +  4) ^{2}} \\  \\  \\

\dashrightarrow\:\:\sf d_4 =\sqrt{( 4)^{2} +(3) ^{2}} \\  \\  \\

\dashrightarrow\:\:\sf d_4 =\sqrt{16 +9} \\  \\  \\

\dashrightarrow\:\:\sf d_4 =\sqrt{25} \\  \\  \\

\dashrightarrow \:  \:  \green{\sf d_4= 5  \: units} \\  \\  \\

\sf d_1 = d_2 + d_3 + d_4\: this condition is possible when Quadrilateral is rohmbus or square.

Now, Let the distance B and D be \sf D_1

and A and C be \sf D_2 to be rohmbus \sf D_1\:\sf D_2

:\implies\sf D_1 =\sqrt{(1 - 8)^{2} +( - 4 - 3) ^{2}} \\  \\  \\

:\implies\sf D_1 =\sqrt{( - 7)^{2} +(  - 7) ^{2}} \\  \\  \\

:\implies\sf D_1 =\sqrt{98} \\  \\  \\

:\implies \pink{\sf D_1 =7 \sqrt{2} \: units}  \\  \\  \\

__________________...

:\implies\sf D_2 =\sqrt{(4 - 5)^{2} +( 0 + 1) ^{2}} \\  \\  \\

:\implies\sf D_2 =\sqrt{(- 1)^{2} +( 1) ^{2}} \\  \\  \\

:\implies\sf D_2 =\sqrt{1  + 1} \\  \\  \\

:\implies \orange{\sf D_1 = \sqrt{2} \: units}  \\  \\  \\

This means that \sf D_1\:\sf D_2 hence Quadrilateral is rohmbus.

Attachments:
Similar questions