Math, asked by bangtanboys95, 17 days ago

Answer for the following!​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Case :- 1 Jyoti Diagram

Jyoti divide the pentagon in to two trapezium of equal areas, whose parallel sides are 15 cm and 30 cm respectively and distance between parallel lines is 15/2 cm

We know,

Area of trapezium whose length of parallel sides are a units and b units respectively and distance between parallel lines is h units, is

\color{green}\boxed{ \rm{ \: \: Area_{(trapezium)} \:  =  \:  \frac{1}{2}  \times (a + b) \times h \:  \:  \: }} \\

So,

\rm \: Area_{(pentagon)} \\

\rm \:  =  \: 2 \times Area_{(trapezium)} \\

\rm \:  =  \: 2 \times \dfrac{1}{2} \times (30 + 15) \times \dfrac{15}{2}  \\

\rm \:  =  \: 45 \times \dfrac{15}{2}  \\

\rm \:  =  \: \dfrac{675}{2}  \:  {cm}^{2}  \\

\color{green}\rm\implies \boxed{ \rm{ \:\:Area_{(pentagon)} \:  =  \:  \frac{675}{2} \:  {cm}^{2}   \:  \: }}\\

Case :- 2 Rashida Diagram

Rashida divides the pentagon in to two figures namely square of side 15 cm and triangle having base 15 cm and height 15 cm.

\rm \: Area_{(pentagon)} \\

\rm \:  =  \: Area_{(square)} + Area_{(triangle)} \\

\rm \:  =  \:  {15}^{2} +  \frac{1}{2} \times 15 \times 15 \\

\rm \:  =  \:  225 +  \frac{225}{2}\\

\rm \:  =  \:  \frac{450 + 225}{2}\\

\rm \:  =  \:  \frac{675}{2} \:  {cm}^{2} \\

Hence,

\color{blue}\rm\implies \boxed{ \rm{ \:\:Area_{(pentagon)} \:  =  \:  \frac{675}{2} \:  {cm}^{2}   \:  \: }}\\

From this, we concluded that area remains the same.

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Answered by jhajatashankar504
1

Answer:

I hope this helps you and thank you

Attachments:
Similar questions