Math, asked by Aayush51525, 11 months ago

answer for the question given in the picture​

Attachments:

Answers

Answered by Anonymous
20

Question :

If a = 2 + √3,then find the value of a - 1/a

Solution :

Given that

a = 2 + √3

Here,

 \sf \:  \dfrac{1}{a}  =  \dfrac{1}{2 +  \sqrt{3} }  \\  \\  \longmapsto \:  \sf \:  \dfrac{1}{a}  =  \dfrac{1}{2 +  \sqrt{3} }  \times  \dfrac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \\  \longmapsto \: \sf \:  \dfrac{1}{a}  =  \dfrac{2  -  \sqrt{3} }{ {2}^{2} - ( \sqrt{3}) {}^{2}   }  \\  \\  \longmapsto \:   \boxed{\sf \:  \dfrac{1}{a}  = 2 -  \sqrt{ 3} }

Now,

 \sf \: a -  \dfrac{1}{a}  \\  \\  =  \sf \: (2 +  \sqrt{3} )  - (2 -  \sqrt{3} ) \\  \\  =  \sf \:   2 \sqrt{3}

Answered by Anonymous
11

 \large \green{ \bf Given : }

a = 2 +  \sqrt{3}

 \bf \large  \blue {To  \: Find : }

a -  \frac{1}{a}

 \large \red{ \bf Solution : }

a = 2 +   \sqrt{3}  \\  \\  \frac{1}{a}  =  \frac{1}{2 +  \sqrt{3} }

By rationalisation

 \frac{1}{a} =   \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 - \sqrt{3}  }{2 -  \sqrt{3}}    \\  \\  \frac{1}{a}   = \frac{2 -  \sqrt{3} }{4 - 3}  \\  \\  \frac{1}{a}  = 2 -  \sqrt{3}

a -  \frac{1}{a}  \\  \\ \Longrightarrow 2 +  \sqrt{3}  -( 2  -  \sqrt{3})  \\  \\ \large{  \boxed{ \bf \pink{ \Longrightarrow  2\sqrt{2}}} }

Similar questions