answer for this question
Attachments:
Answers
Answered by
1
Answer:
: If the vectors ai + j + k, i + bj + k and i + j + ck (a ≠ b ≠ c ≠ 1) are coplanar, then the value of [1] / [1 − a] + [1] / [1 − b] + [1] / [1 − c] = _________.
Solution:
Since \begin{vmatrix} a &1 &1 \\ 1&b &1 \\ 1&1 &c\end{vmatrix}
∣
∣
∣
∣
∣
∣
∣
a
1
1
1
b
1
1
1
c
∣
∣
∣
∣
∣
∣
∣
= 0
Applying R2 → R2 − R1 and R3 → R3 − R1, we get
\begin{vmatrix} a &1 &1 \\ 1-a&b-1 &0 \\ 1-a&0 &c-1\end{vmatrix}
∣
∣
∣
∣
∣
∣
∣
a
1−a
1−a
1
b−1
0
1
0
c−1
∣
∣
∣
∣
∣
∣
∣
= 0
On expanding, we get
a (b − 1) (c − 1) − (1 − a) (c − 1) − (1 − a) (b − 1) = 0
On dividing by (1 − a) (1 − b) (1 − c), we get
[a] / [1 − a] + [1] / [1 − b] + [1] / [1 − c] = 0
⇒ [1] / [1 − a] + [1] / [1 − b] + [1] / [1 − c]
= {[1] / [1 − a]} − {[a] / [1 − a]}
= 1
Explanation:
TRY TO UNDERSTAND FROM ANOTHER QUESTION...
MARK IT...
Answered by
0
r=√2²+3²+5²
r=√4+9+25
r=√38
Similar questions