Math, asked by AnbalaganKAnbalaganK, 7 hours ago

answer for this step by step explanation​

Attachments:

Answers

Answered by TrustedAnswerer19
46

\huge\mathcal{\fcolorbox{red}{black}{\pink{ANSWER}}}

see the attachment please

To learn more :

01. Two matrixes A and B are given. Express B^-1 through x and A.

❌ Don't spamming

✅ Quality answer needed.

https://brainly.in/question/41760349?utm_source=android&utm_medium=share&utm_campaign=question

Attachments:
Answered by SparklingBoy
5

༒ Given ➽

 A = \begin{bmatrix}cos \theta& - sin \theta \\  sin \theta&cos \theta \end{bmatrix}

And

B = \begin{bmatrix}cos \theta& sin \theta \\ -   sin \theta&cos \theta \end{bmatrix}

___________________________

༒ To Prove ➽

 \large AB = I

___________________________

༒ Proof ➽

LHS:-

AB =  \begin{bmatrix}cos \theta& - sin \theta \\  sin \theta&cos \theta \end{bmatrix}\begin{bmatrix}cos \theta& sin \theta \\   - sin \theta&cos \theta \end{bmatrix} \\  \\  = \begin{bmatrix}cos {}^{2}  \theta +  {sin}^{2} \theta & cos \theta  sin \theta - sin \theta cos \theta \\  sin \theta cos \theta - cos \theta sin \theta& {sin}^{2} \theta +  cos  {}^{2} \theta \end{bmatrix} \\  \\  = \begin{bmatrix}1& 0 \\  0&1\end{bmatrix} = I

= RHS

Hence Proved

___________________________

Similar questions