Math, asked by Saumya9139, 1 year ago

answer full solution

Attachments:

Answers

Answered by allysia
7

 \frac{1}{ \sqrt{11 -  2\sqrt{30} } }  -  \frac{1}{ \sqrt{7}  - 2\sqrt{10} }  -  \frac{1}{ \sqrt{8 + 4 \sqrt{3} } }

Let's simplify each term one by one,
 \frac{1}{ \sqrt{11 - 2 \sqrt{30} } }  \\ here \\ let \sqrt{11 - 2 \sqrt{30} }  = x + y \\ 11  - 2 \sqrt{30}  =  {(x  - y)}^{2}  \\ 11 - 2 \sqrt{30}  =  {x}^{2}  +  {y}^{2}  - 2xy \\  \\ by \: hit \: and \: trial \: method \:  \\ x =  \sqrt{6}  \\ y =  \sqrt{5} \\ so \\  \sqrt{11 - 2 \sqrt{30} }  =  \sqrt{( {\sqrt{6}  -   \sqrt{5} ) }^{2}  }  \\  \\
by susbtitutingthis value for the very first term we're gonna get,
 \frac{1}{ \sqrt{11 - 2 \sqrt{30} } }  =  \frac{1}{ \sqrt{ { (\sqrt{6}   -  \sqrt{5} )}^{2} } }   \\  \\  =  \frac{1}{ \sqrt{6}  -  \sqrt{5}  }
Similarly, simply all other terms

 \frac{3}{ \sqrt{7 - 2 \sqrt{10} } }  =  \frac{3}{ \sqrt{ {( \sqrt{5 } -  \sqrt{2} ) }^{2} } }  =  \frac{3}{ \sqrt{5}  -  \sqrt{2} }

We'll do this for the last term too,

 \frac{4}{ \sqrt{8 + 4 \sqrt{3} } }  =  \frac{4}{ \sqrt{8 + 2 \sqrt{12} } } =  \frac{4}{ \sqrt{ {( \sqrt{6}  +  \sqrt{2}) }^{2} } }  \\  =  \frac{4}{ \sqrt{6} +  \sqrt{2}  }




Now, we have simplified all three terms
substitute them for the previous terms and you'll end up with:

  \frac{1}{ \sqrt{6}  -  \sqrt{5} }  -  \frac{3}{ \sqrt{5}  -   \sqrt{2}  }   -   \frac{4}{ \sqrt{6}     +   \sqrt{2} }




Rationalise each term one by one and you'll get

 \frac{ \sqrt{6}    +   \sqrt{5}  }{1}  -   \frac{ 3(\sqrt{5}  +  \sqrt{2}) } {3}   -   \frac{ 4(\sqrt{6} -  \sqrt{2} ) }{4}  \\ = \sqrt{6} +  \sqrt{5}    - ( \sqrt{5}  +  \sqrt{2} ) - ( \sqrt{6} -  \sqrt{2})   \\   = \sqrt{6}  +  \sqrt{5}  -  \sqrt{5}  -  \sqrt{2}  -  \sqrt{6}   +  \sqrt{2}  \\  = 0



Therefore, Option D is the correct one.

allysia: got it sweetie?
Saumya9139: yes mam
AkshithaZayn: :D great! i almost fainted :p
Saumya9139: i also fainted (-;
Answered by rajivnld2002p7qvsa
1
ans is D. sol is attached
Attachments:

rajivnld2002p7qvsa: mark brainliest if find a good sol
rajivnld2002p7qvsa: thanks
Similar questions