Answer good users no spam
Answers
Question :
If none of x, y, z is an odd multiple of π/2 and if sin (y + z – x), sin (z + x – y), sin (x + y – z) are in AP, then prove that tanx, tany and tanz are also in AP.
Explaination :
Given that, sin (y + z – x), sin (z + x – y) and sin (x + y – z) are in AP.
➠ sin (z + x – y) – sin (y + z – x) = sin (x +
y – z) – sin (z + x – y)
➠ z cos z sin (x – y) = 2 cosx sinx (y – z)
➠ cosz [sinx cosy – cosxsiny] = cosx
[sinycosz – cosysinz]
Dividing by cosx, cosy and cosz, we get :
➠ sinx/cosx – siny/cosy = siny/cosy –
sinz/cosz
➠ tanx – tany = tany – tanz
➠ tanx + tanz = tany + tany
➠ tanx + tanz = 2 tany
Therefore, tanx, tany and tanz are in AP.
Henceforth, proved!
Answer:
Given that, sin (y + z – x), sin (z + x – y) and sin (x + y – z) are in AP.
➠ sin (z + x – y) – sin (y + z – x) = sin (x +
y – z) – sin (z + x – y)
➠ z cos z sin (x – y) = 2 cosx sinx (y – z)
➠ cosz [sinx cosy – cosxsiny] = cosx
[sinycosz – cosysinz]
Dividing by cosx, cosy and cosz, we get :
➠ sinx/cosx – siny/cosy = siny/cosy –
sinz/cosz
➠ tanx – tany = tany – tanz
➠ tanx + tanz = tany + tany
➠ tanx + tanz = 2 tany
Therefore, tanx, tany and tanz are in AP.
Henceforth, proved!
Step-by-step explanation:
thanks..