Math, asked by Questioner217095, 1 month ago

answer if you know!
No spam

Attachments:

Answers

Answered by user0888
21

\large\text{\underline{Let's begin.}}

We are given an exponential equation. To solve this equation, we need to use the property of exponent.

\large\text{\underline{First to know?}}

  • a^{m}\times a^{n}=a^{m+n}

This is a property of exponents.

  • Comparing the exponents.

This is a property of exponents for an equal base. If bases are equal and two powers are equal, the exponent is also equal.

\large\text{\underline{Solution}}

\implies \left(\dfrac{5}{3}\right)^{-5}\times\left(\dfrac{5}{3}\right)^{-11}=\left(\dfrac{5}{3}\right)^{8x}

\implies \left(\dfrac{5}{3}\right)^{-5-11}=\left(\dfrac{5}{3}\right)^{8x}

\implies \left(\dfrac{5}{3}\right)^{-16}=\left(\dfrac{5}{3}\right)^{8x}

\implies 8x=-16\implies \therefore x=-2

\large\text{\underline{Conclusion}}

Hence, the value of x is -2. This is the end of the required answer.

\large\text{\underline{Advanced Question}}

Here is an equation of example, find the value of x.

\hookrightarrow\left(2+\sqrt{3}\right)^{x}+\left(2-\sqrt{3}\right)^{x}=2

\large\text{\underline{First to know?}}

  • a^{0}=1\ (a\neq0)

If the exponent 0 is applied on non-zero numbers, the power becomes 1.

\large\text{\underline{Solution}}

We can note that the two bases are reciprocal.

So, we can substitute t=\left(2+\sqrt{3}\right)^{x}.

Then \dfrac{1}{t}=\left(2-\sqrt{3}\right)^{x}.

\implies t+\dfrac{1}{t}=2

\implies t^{2}-2t+1=0\implies\therefore t=1

After this, substitute t with the given value,

\implies \left(2+\sqrt{3}\right)^{x}=1

We learned that a^{0}=1\ (a\neq0).

\implies \left(2+\sqrt{3}\right)^{x}=\left(2+\sqrt{3}\right)^{0}

Comparing the exponent,

\implies x=0

\large\text{\underline{Conclusion}}

Hence, the value of x is 0.

Answered by Anonymous
71

Answer:

 \sf\tt\large{\green {\underline {\underline{⚘\;Question:}}}}

  • Find x so that,

  • ( \frac{5}{3}) {}^{ - 5}  \times ( \frac{5}{3}  ) {}^{ - 11}  =  (\frac{5}{3} ) {}^{8x}

 \sf\tt\large{\green {\underline {\underline{⚘\;Answer:}}}}

 \sf\tt\large{\purple {\underline {\underline{⚘\;The \;value \;of \;x \;is \;-2:}}}}

 \sf\tt\large{\red {\underline {\underline{⚘\;Given:}}}}

  • In the question given some exponential equation.

 \sf\tt\large{\red {\underline {\underline{⚘\;To find:}}}}

  • The value of x for given exponential equation.

 \sf\tt\large{\red {\underline {\underline{⚘\;Solution:}}}}

  • Here we know the one thing that is,

  •  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}
  • (The property of exponents).

  • According to exponents property lets apply the values.

  • (5/3)^-5 ×(5/3)^-11= (5/3)^8x

  • By solving this we get that,

  • (5/3)^-11-5 = (5/3)^8x

  • (5/3)^-16 = (5/3)^8x

  • -16 = 8x

  • -16/8 = x

  • -2 = x.

 \sf\tt\large{\red {\underline {\underline{⚘\;Hope \;it \;helps \;you \;mate:}}}}

 \sf\tt\large{\red {\underline {\underline{⚘\;Thank \;you:}}}}

Similar questions