Math, asked by anishprofessional, 10 months ago

ANSWER IN ATTACHMENT

Attachments:

Answers

Answered by brainlyaryan12
4

<body bgcolor="r"><font color =Yellow>

\huge{\orange{\fbox{\fbox{\blue{\bigstar{\mathfrak{\red{Hello\:Mate}}}}}}}}

<marquee scrollamount = 700>♥️♥️♥️</marquee><marquee scrollamount = 500>⭐⭐⭐</marquee>

\huge{\red{\underline{\overline{\mathbf{Question}}}}}

→ In a ∆ABC , \angleB=90° and D is the mid point of BC. Prove that :

(i) AC² = AD² + 3CD²

(ii) BC² = 4( AD² - AB² )

\huge{\green{\underline{\overline{\mathbf{Answer}}}}}

⇒Given:

  • \angle B=90°
  • ⇒BD = CD
  • BC=2BD=2DC

⇒To Prove:

  • ⇒(i) AC² = AD² + 3CD²
  • (ii) BC² = 4( AD² - AB² )

\huge{\pink{\overbrace{\underbrace{\red{Solution:-}}}}}

Solving For 1st-

AC^2=AB^2+BC^2

AC^2=AD^2-BD^2+BC^2 \small{[AB^2=AD^2-BD^2]}

AC^2=AD^2-BD^2+(2BD)^2 [BC=2BD]

AC^2=AD^2-BD^2+4BD^2

AC^2=AD^2+3BD^2

AC^2=AD^2+3CD^2 [BD=CD]

\large{\orange{\fbox{\blue{Hence\;Proved}}}}

Solving for 2nd -

AD^2=AB^2+BD^2

BD^2=AD^2-AB^2

\big(\frac{BC}{2}\big)^2=AD^2-AB^2 [  BD=\frac{BC}{2} ]

\frac{BC^2}{4}=AD^2-AB^2

BC^2=4(AD^2-AB^2)

\large{\orange{\fbox{\blue{Hence\;Proved}}}}

≿━━━━━━━━━༺❀༻━━━━━━━━━≾

Formulas Used :-

Pythagoras Theorem-

  • H^2=P^2+B^2

≿━━━━━━━━━༺❀༻━━━━━━━━━≾

\huge{\purple{\bigstar{\blue{\text{Please Follow.. }}}}}<marquee scrollamount = 700>⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️</marquee>

<font color = lime><marquee scrollamount = 10

★━★━★━★━★━★━★━★━★━★━★━★━★━★

▁ ▂ ▄ ▅ ▆ ▇ █♥️ ᗩᖇƳᗩ ♥️█ ▇ ▆ ▅ ▄ ▂ ▁

★━★━★━★━★━★━★━★━★━★━★━★━★━★

Answered by rajaryan25dec
2

Answer with Step-by-step explanation:

Given: ∠B = 90ᵒ

           D is midpoint of BC, BD = CD = 1/2BC

To Prove: (i) AC² = AD² + 3CD²

                (ii) BC² = 4(AD² - AB²)

Proof: (i) In ▲ABD, ∠B = 90ᵒ

           By using Pythagoras theorem,

           H² = B² + P²

           AD² = BD² + AB²  ----------------(1)

       

          In ▲ABC, ∠B = 90ᵒ

          By using Pythagoras Theorem

          AC² = BC² + AB²

          AC² = (2CD)² + AB²

          AC² = 4CD² + AB²  ---------------(2)

      Now, by subtracting (1) from (2)

      AC² - AD² = 4CD² + AB² - (BD² + AB²)

      AC² - AD² = 4CD² + AB² - CD² + AB²       {BC = CD}

      AC² - AD² = 3CD²

      AC² = AD² + 3CD²

      Hence Proved.

(ii)  From equation (1)

     AD² = BD² + AB²

     AD² = (1/2 BC)² + AB²               {Given: BD = CD = 1/2BC}

     AD² = 1/4 BC² + AB²

     AD² - AB² = 1/4 BC²

     1/4 BC² = AD² - AB²

     BC² = 4(AD² - AB²)

     Hence Proved.

Hope it helps.

Plz mark me as brainliest...

Similar questions