ANSWER IN ATTACHMENT
Answers
✪ ✪
→ In a ∆ABC , B=90° and D is the mid point of BC. Prove that :
(i) AC² = AD² + 3CD²
(ii) BC² = 4( AD² - AB² )
✪ ✪
⇒Given:
- ⇒B=90°
- ⇒BD = CD
- ⇒
⇒To Prove:
- ⇒(i) AC² = AD² + 3CD²
- (ii) BC² = 4( AD² - AB² )
⭐Solving For 1st-
⇒
⇒
⇒ [BC=2BD]
⇒
⇒
⇒ [BD=CD]
⭐Solving for 2nd -
⇒
⇒
⇒ [ ]
⇒
⇒
≿━━━━━━━━━༺❀༻━━━━━━━━━≾
Formulas Used :-
Pythagoras Theorem-
- ⇒
≿━━━━━━━━━༺❀༻━━━━━━━━━≾
★━★━★━★━★━★━★━★━★━★━★━★━★━★
▁ ▂ ▄ ▅ ▆ ▇ █♥️ ᗩᖇƳᗩ ♥️█ ▇ ▆ ▅ ▄ ▂ ▁
★━★━★━★━★━★━★━★━★━★━★━★━★━★
Answer with Step-by-step explanation:
Given: ∠B = 90ᵒ
D is midpoint of BC, BD = CD = 1/2BC
To Prove: (i) AC² = AD² + 3CD²
(ii) BC² = 4(AD² - AB²)
Proof: (i) In ▲ABD, ∠B = 90ᵒ
By using Pythagoras theorem,
H² = B² + P²
AD² = BD² + AB² ----------------(1)
In ▲ABC, ∠B = 90ᵒ
By using Pythagoras Theorem
AC² = BC² + AB²
AC² = (2CD)² + AB²
AC² = 4CD² + AB² ---------------(2)
Now, by subtracting (1) from (2)
AC² - AD² = 4CD² + AB² - (BD² + AB²)
AC² - AD² = 4CD² + AB² - CD² + AB² {BC = CD}
AC² - AD² = 3CD²
AC² = AD² + 3CD²
Hence Proved.
(ii) From equation (1)
AD² = BD² + AB²
AD² = (1/2 BC)² + AB² {Given: BD = CD = 1/2BC}
AD² = 1/4 BC² + AB²
AD² - AB² = 1/4 BC²
1/4 BC² = AD² - AB²
BC² = 4(AD² - AB²)
Hence Proved.
Hope it helps.
Plz mark me as brainliest...