Math, asked by jasleenkaur34, 2 months ago

ANSWER IN DETAIL FORM STEP BY STEP

Attachments:

Answers

Answered by Anonymous
18

_________________________

 \:  \\  \:

 \huge \frak \red{Answer}

 \:

 \qquad  :  \implies{2 \dfrac{19}{24} }

 \:  \:

 \frak \green{Explanation}

 \:

First we will convert the mixed number into improper fraction.

 \:

multiply the denominator with the whole number then add 3 to the product.

 \quad \rightarrow{7 \dfrac{3}{4} } =  \dfrac{31}{4}

 \:

Same with the second mixed number.

 \:

 \quad \rightarrow{3 \dfrac{5}{6}   =  \dfrac{35}{6} }

 \:

Now find the LCM of 4,6 & 8.

 \:

The LCM of 4,6 & 8 is 24.

 \:

then divide the present denominator with 24.

» 24 ÷ 4 = 6

» So now multiply the first fraction with 6 and do the same for each.

Which would be like this ↓

    : \implies{ \frac{(31 \times 6) - (35 \times 4) + (7 \times 3)}{24} }

 \:

Now multiply the numbers in the numerator ↓

 \:

  :  \implies{ \dfrac{186 - 140 + 21}{24} }

 \:

Now subtract 186-140 ↓

 \:

 :  \implies{ \dfrac{46 + 21}{24} }

 \:

now add it

 \:

 :  \implies{ \dfrac{67}{24} }

 \:

Now the fraction is improper so we have to make it into mixed number.

 \:

 :  \implies{2 \dfrac{19}{24} }

 \:

 \:

_________________________

Answered by Aғiғa
3

Answer:

 \implies2 \frac{19}{24}

Similar questions