Math, asked by sharmamukesh0997, 4 months ago

answer in photo will be more appreciated​

Attachments:

Answers

Answered by vipashyana1
0

Answer:

 \frac{1}{ \sqrt{2} + 1 }  +  \frac{1}{ \sqrt{3} +  \sqrt{2}  }  +  \frac{1}{2 +  \sqrt{3} }  = 1 \\  \frac{1}{ \sqrt{2} + 1 }  \times  \frac{ \sqrt{2} - 1 }{ \sqrt{2}  - 1}  +  \frac{1}{ \sqrt{3} +  \sqrt{2}  }  \times  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }  +  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  = 1 \\  \frac{1( \sqrt{2}  - 1)}{( \sqrt{2} + 1)( \sqrt{2}  - 1) }  +  \frac{1( \sqrt{3} -  \sqrt{2} ) }{( \sqrt{3} +  \sqrt{2})( \sqrt{3} -  \sqrt{2})}  +  \frac{1(2 -  \sqrt{3}) }{( 2 + \sqrt{3})(2 -  \sqrt{3} ) }  = 1 \\  \frac{ \sqrt{2} - 1 }{ {( \sqrt{2}) }^{2} -  {(1)}^{2}  }  +  \frac{ \sqrt{3}  -  \sqrt{2} }{ {( \sqrt{3}) }^{2} -  {( \sqrt{2}) }^{2}  }  +  \frac{2 -  \sqrt{3} }{ {(2)}^{2} -  {( \sqrt{3} )}^{2}  }  = 1 \\  \frac{ \sqrt{2}  - 1}{2 - 1}  +  \frac{ \sqrt{3} -  \sqrt{2}  }{3 - 2}  +  \frac{2 -  \sqrt{3} }{4 - 3}  = 1 \\  \frac{ \sqrt{2}  - 1}{1}  +  \frac{ \sqrt{3} -  \sqrt{2}  }{1}  +  \frac{2 -  \sqrt{3} }{1}  = 1 \\  \sqrt{2}  - 1 +  \sqrt{3}  -  \sqrt{2}  + 2 -  \sqrt{3}  = 1 \\   \sqrt{2}  -  \sqrt{2}  +  \sqrt{3}  -  \sqrt{3}  - 1 + 2 = 1 \\ 1 = 1 \\ LHS=RHS \\ Hence \: proved

Answered by Anonymous
4

Answer:

4.page and last page of math question paper

Attachments:
Similar questions