Math, asked by pottilucky57, 5 months ago

Answer in the form (a+ib)
(i-1)^3​

Answers

Answered by Asterinn
1

We have to write (i-1)³ im form of (a+ib)

We know that :-

 \sf {(a - b)}^{3}  = ( {a}^{2}  +  {b}^{2}  - 2ab)(a - b)

Therefore now :-

\sf \implies {(i - 1)}^{3}  = ( {i}^{2}  +  {1}^{2}  - 2i)(i - 1)

Where i = √(-1)

  • i² = -1

\sf \implies {(i - 1)}^{3}  = (  - 1 +  {1} - 2i)(i - 1)

\sf \implies {(i - 1)}^{3}  = ( 0  - 2i)(i - 1)

\sf \implies {(i - 1)}^{3}  = ( - 2i)(i - 1)

\sf \implies {(i - 1)}^{3}  =   - 2 {i}^{2}  + 2 i

\sf \implies {(i - 1)}^{3}  =   - 2 ( - 1)  + 2 i

\sf \implies {(i - 1)}^{3}  =   2  + 2 i

Answer :

\bf  2  + 2 i

Answered by gurj57364953
9

Step-by-step explanation:

write (i-1)³ im form of (a+ib)

We know that :-

{(a - b)}^{3} = ( {a}^{2} + {b}^{2} - 2ab

(a- b)

Therefore:-

{(i - 1)}^{3} = ( {i}^{2} + {1}^{2} - 2i)(i-1)

⟹ (i−1) 3 =(i 2 +1 2 −2i)(i−1)

Where i = √(-1)

i² = -1

{(i - 1)}^{3} = ( - 1 + {1} - 2i)(i - 1)

⟹(i−1) 3 =(−1+1−2i)(i−1)

{(i - 1)}^{3} = ( 0 - 2i)(i - 1)

⟹(i−1) 3=(0−2i)(i−1)

{(i - 1)}^{3} = - 2 {i}^{2} + 2

⟹(i−1) 3=−2i2+2i

{(i - 1)}^{3} = 2 + 2 i

⟹(i−1) 3 =2+2i

Correct Answer :2 + 2 i2+2i

Similar questions