Math, asked by grisu6677, 1 month ago

answer is 1-sin square0

Attachments:

Answers

Answered by jimin987
0

Answer:

here is your answer army

Step-by-step explanation:

have a bangtastic day ahead

Attachments:
Answered by TrustedAnswerer19
22

\orange{ \boxed{ \boxed{ \begin{array}{c | c}  \sf \: Process & \sf \: Explantion \\  \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }& \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\  \\  \rm(1  + sin  \theta)(1 - sin  \theta)& \sf \: given \\  \\  \rm =  {1}^{2} -  {sin}^{2}   \theta& \bf \because \: (x + y)(x - y) =  {x}^{2}  -  {y}^{2}   \\  \\  \rm = 1 -  {sin}^{2}   \theta& \\  \\  \rm =  {cos}^{2}  \theta& \bf \because \:  {sin}^{2}    \theta +  {cos}^{2}  \theta = 1 \\  \\ & \bf =  >  {cos}^{2}  \theta = 1 -  {sin}^{2}    \theta  \end{array}}}}

Finally,

\green{ \boxed{ \boxed{ \begin{array}{cc} \rm \:  (1 + sin  \theta)(1 - sin  \theta) =  {cos}^{2}   \theta \: \end{array}}}}

Similar questions