Math, asked by varshithab316, 5 hours ago

answer is 5, with full explanation​

Attachments:

Answers

Answered by MysticSohamS
2

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: find :  \\which \: \:  term \: of \: given \: sequence  \\ is  \: \:  \frac{1}{32}  \:  \: (ie \:  \: n)\\  \\ so \: given \: sequence \: is \\  \\ 2 +  \frac{1}{ \sqrt{2} }  +  \frac{1}{4}  + so \:  \: on \\  \\ so \: then \\ t1 = 2 \:  \:  \\  \\ t2 =  \frac{1}{ \sqrt{2} }  \\  \\ t 3 =  \frac{1}{4}  \\  \\  \frac{t2}{t1}  =  \frac{ \frac{1}{ \sqrt{2} } }{2}  \\  \\ \frac{t2}{t1}   =  \frac{1}{2 \sqrt{2} }  \\  \\  \frac{t3}{t2}  =  \frac{ \frac{ \frac{1}{4 } }{1} }{ \sqrt{2} }  \\  \\  =   \frac{ \sqrt{2} }{4}  \\  \\  =  \frac{ \sqrt{2} }{4}  \times  \frac{ \sqrt{2} }{ \sqrt{2} }  \\  \\  =  \frac{2}{4 \sqrt{2} }  \\  \\ \frac{t3}{t2}   =  \frac{1}{2 \sqrt{2} }

so \: here \\ since \: common \: ratio \: (r) \: is \: constant \\ given \: sequence \: is \: G.P \\  \\ where \\ a = 2 \\ r =  \frac{1}{2 \sqrt{2} }

so \: let \: then \\ tn =  \frac{1}{32}  \\  \\ we \: have \\   \\  tn = a.r {}^{n - 1}  \\  \\  \frac{1}{32}  = 2. (\frac{1}{2 \sqrt{2} }  \: ) {}^{n - 1}  \\  \\ ( \frac{1}{2 \sqrt{2} }  \: ) {}^{n - 1}  =  \frac{1}{64}  \\  \\ ( \frac{1}{2 \sqrt{2} }  \: ) {}^{n - 1}  = ( \frac{1}{2 \sqrt{2} } ) {}^{4}  \\  \\ comparing \: respective \: exponentials \\ and \: bases \\  \\ we \: get \\ n - 1 = 4 \\  \\ n = 5 \\  \\

hence \: for \: given \:  \: G.P   \\  \frac{1}{32}  \:  \: is \: our \:  \: 5th \: term

Similar questions