answer is given question
Answers
Answer :-
- First u need to know some identities :-
Now we apply this identities for this sum :-
Answer:
First u need to know some identities :-
\longrightarrow\large\textsf{$ a^{m} × a^{n} = a^{m + n }$}⟶a
m
×a
n
=a
m+n
\longrightarrow\large\textsf{$a^{m} ÷ a^{n} = a^{m - n }$}⟶a
m
÷a
n
=a
m−n
Now we apply this identities for this sum :-
\begin{gathered} = \: \: \: \: \: \: \: \frac{ { 3}^{ - 5} \times {10}^{ - 5} \times 125 }{ {5}^{ - 7} \times {6}^{ - 5} } \\ \\ = \: \: \: \: \: \: \: \: \: \frac{ \cancel{{3}^{ - 5}} \times \cancel{{2}^{ - 5}} \times {5}^{ - 5} \times {5}^{3} }{ {5}^{ - 7} \times \cancel{{3}^{ - 5}} \times \cancel{{2}^{ - 5}} } \\ \\ = \: \: \: \: \: \: \: \: \: \frac{ {5}^{ - 5 + 3} }{ {5}^{ - 7} } \\ \\ = \: \: \: \: \: \: \: \frac{ {5}^{ - 2} }{ {5}^{ - 7} } \\ \\ = \: \: \: \: \: {5}^{ - 2 - ( - 7)} \\ \\ = \: \: \: \: \: \: {5}^{ - 2 + 7} \\ \\ = \: \: \: \: \: \boxed{{5}^{5}} \end{gathered}
=
5
−7
×6
−5
3
−5
×10
−5
×125
=
5
−7
×
3
−5
×
2
−5
3
−5
×
2
−5
×5
−5
×5
3
=
5
−7
5
−5+3
=
5
−7
5
−2
=5
−2−(−7)
=5
−2+7
=
5
5