Math, asked by prafullasenapathi, 9 months ago

answer is option (3)

need explanation​

Attachments:

Answers

Answered by shadowsabers03
6

First let us find standard deviation of n terms in an AP.

n^{th} term of the AP of first term a and common difference d is,

  • a_n=a+(n-1)d

Mean of the terms is,

\longrightarrow \bar a=\dfrac{1}{n}\displaystyle\sum_{i=1}^na_i

\longrightarrow \bar a=\dfrac{1}{n}\cdot\dfrac{n}{2}[2a+(n-1)d]

\longrightarrow \bar a=a+\left(\dfrac{n-1}{2}\right)d

\longrightarrow \bar a=a+\left(\dfrac{n+1}{2}-1\right)d

\longrightarrow \bar a=a_{\frac{n+1}{2}}

I.e., \left(\dfrac{n+1}{2}\right)^{th} term is the mean.

Deviation of each term will be,

\longrightarrow a_i-\bar a=a_i-a_{\frac{n+1}{2}}

\longrightarrow a_i-\bar a=[a+(i-1)d]-\left[a+\left(\dfrac{n-1}{2}\right)d\right]

\longrightarrow a_i-\bar a=\left(i-\dfrac{n+1}{2}\right)d

Then, standard deviation,

\displaystyle\longrightarrow\sigma=\sqrt{\dfrac{1}{n}\sum_{i=1}^n(a_i-\bar a)^2}

\displaystyle\longrightarrow\sigma=\sqrt{\dfrac{1}{n}\sum_{i=1}^n\left[\left(i-\dfrac{n+1}{2}\right)^2d^2\right]}

\displaystyle\longrightarrow\sigma=\sqrt{\dfrac{d^2}{n}\sum_{i=1}^n\left(i^2-i(n+1)+\dfrac{(n+1)^2}{4}\right)}

\displaystyle\longrightarrow\sigma=\sqrt{\dfrac{d^2}{n}\sum_{i=1}^ni^2-\dfrac{d^2(n+1)}{n}\sum_{i=1}^ni+\dfrac{d^2}{n}\sum_{i=1}^n\dfrac{(n+1)^2}{4}}

\displaystyle\longrightarrow\sigma=\sqrt{\dfrac{d^2}{n}\cdot\dfrac{n(n+1)(2n+1)}{6}-\dfrac{d^2(n+1)}{n}\cdot\dfrac{n(n+1)}{2}-\dfrac{d^2}{n}\cdot\dfrac{n(n+1)^2}{4}}

\displaystyle\longrightarrow\sigma=\sqrt{\dfrac{d^2(n+1)(2n+1)}{6}-\dfrac{d^2(n+1)^2}{2}+\dfrac{d^2(n+1)^2}{4}}

\displaystyle\longrightarrow\sigma=\sqrt{\dfrac{d^2(n+1)(2n+1)}{6}-\dfrac{d^2(n+1)^2}{4}}

\displaystyle\longrightarrow\sigma=|d|\sqrt{(n+1)\left(\dfrac{2n+1}{6}-\dfrac{n+1}{4}\right)}

\displaystyle\longrightarrow\sigma=|d|\sqrt{(n+1)\cdot\dfrac{8n+4-6n-6}{24}}

\displaystyle\longrightarrow\underline{\underline{\sigma=|d|\sqrt{\dfrac{n^2-1}{12}}}}

Consider two APs consisting of n terms each, having standard deviation \sigma_1 and \sigma_2 and common difference d_1 and d_2 respectively.

Since both APs contain same no. of terms,

\longrightarrow\sigma\propto|d|

Therefore,

\longrightarrow\underline{\underline{\dfrac{\sigma_1}{\sigma_2}=\left|\dfrac{d_1}{d_2}\right|}}

According to the question, the standard deviation of the AP 5, 7, 9,..., 151 is \sigma.

Here,

  • a=5
  • d=7-5=2
  • n=\dfrac{151-5}{2}+1=74

We've to find standard deviation of the AP 32, 44, 56,..., 908.

Here,

  • a=32
  • d=56-44=12
  • n=\dfrac{908-32}{12}+1=74

Both APs contain same no. of terms. Therefore,

\longrightarrow\dfrac{\sigma_1}{\sigma_2}=\left|\dfrac{d_1}{d_2}\right|

\longrightarrow\dfrac{\sigma}{\sigma'}=\left|\dfrac{2}{12}\right|

\longrightarrow\dfrac{\sigma}{\sigma'}=\dfrac{1}{6}

\longrightarrow\underline{\underline{\sigma'=6\sigma}}

Hence (3) is the answer.


Vamprixussa: Fabulousss !
Answered by Anonymous
0

Answer:

plz Mark it as brainliest answer plzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz zzzzzzzzzzzzzzzzzzzz zzzzzzzzzzzzzzzzzzzz

Similar questions