Math, asked by pbsy26, 19 days ago

Answer is option (A) Pls give correct explanation of this answer​

Attachments:

Answers

Answered by beebeee
1

 { (\frac{m}{n} )}^{ \frac{3}{8} }  + { (\frac{n}{m} )}^{ \frac{3}{8} } = 9 \\ \: let \:  \frac{m}{n }  = x \: and \:  \frac{n}{m} = y  \\  {x}^{ \frac{3}{8} }  +   {y}^{ \frac{3}{8} }   = 9 \\ squaring \: on \: both \: sides \:  \\({x}^{ \frac{3}{8} }  +   {y}^{ \frac{3}{8} } )^{2}   = {9}^{2}  \\ ({x}^{ \frac{3}{8} } )^{2}  + (  {y}^{ \frac{3}{8} })^{2}  + 2({x}^{ \frac{3}{8} } ) (  {y}^{ \frac{3}{8} })    = {9}^{2}  \\  {x}^{ \frac{6}{8} }  +  {y}^{ \frac{6}{8} }  + 2(xy) ^{ \frac{3}{8} }  = 81 \\   ({\frac{m}{n} })^{ \frac{6}{8} }  + ({\frac{n}{m} })^{ \frac{6}{8} }  + 2( { \frac{mn}{nm} })^{ \frac{3}{8} }  = 81 \\ ({\frac{m}{n} })^{ \frac{3}{4} }  + ({\frac{n}{m} })^{ \frac{3}{4} }  + 2( {1})^{ \frac{3}{8} }  = 81 \\ ({\frac{m}{n} })^{ \frac{3}{4} }  + ({\frac{n}{m} })^{ \frac{3}{4} }  + 2 (1) = 81 \\ ({\frac{m}{n} })^{ \frac{3}{4} }  + ({\frac{n}{m} })^{ \frac{3}{4} }   = 81 - 2 \\ ({\frac{m}{n} })^{ \frac{3}{4} }  + ({\frac{n}{m} })^{ \frac{3}{4} }   = 79

Similar questions