Math, asked by sa747923, 3 months ago

answer is you can
fast​

Attachments:

Answers

Answered by navin772009
1

Answer:

the answers is

 =  {x}^{2b}

Step-by-step explanation:

given:

(  \frac{ {x}^{ \frac{a}{a - b} } }{ {x}^{ \frac{a}{a - b} } }  \times  \frac{ {x}^{  \frac{b}{b - a} } }{ {x}^{ \frac{b}{b - a} } } )

cancelling the like terms

 =  \frac{ {x}^{ \frac{a}{a - b} } }{ {x}^{ \frac{a}{a + b} } }

if \: we \: have \:  \ \:  :  {x}^{ \frac{a}{b} }   \\ thenw \: can \: write \: it \: as \:  {x}^{ \frac{a}{b} }  =   \frac{ {x}^{a} }{ {x}^{b} }

then we can write the above equation as

 \frac{ {x}^{ \frac{a}{a - b} } }{  {x}^{ \frac{a}{a + b} } } =  \frac{ {x}^{a} }{ {x}^{a - b} }  \times  \frac{ {x}^{a + b} }{ {x}^{a} }

 =  \frac{ {x}^{a + b} }{ {x}^{a - b} }

 =  \frac{ {x}^{a \ }  \times  {x}^{b}  \times  {x}^{b} }{ {x}^{a} }

 =  {x}^{2b}

Similar questions