Math, asked by loveu41, 7 months ago

answer it............​

Attachments:

Answers

Answered by aryan073
4

Answer:

Answer of this question ::

...................................(⌒o⌒).......................

\huge\mathfrak{\underline{\underline{\red{Answer:-}}}}

Step-by-step explanation:

= \sqrt[a + b]{ \frac{x   { { ^{a} }^{2} }   }{x { ^{b} }^{2} } }  \times  \sqrt[b + c]{ \frac{ { {x}^{b} }^{2} }{ { {x}^{c} }^{2} } }  \times  \sqrt[c+ a]{ \frac{ { {x}^{c} }^{2} }{ { {x}^{a} }^{2} } }

.

= \frac{ { {x}^{a} }^{2}  \frac{1}{a + b} }{ { {x}^{b} }^{2} }  \times  \frac{ { {x}^{b} }^{2}  \frac{1}{b + c} }{ { {x}^{c} }^{2} }  \times  \frac{ { { {x} }^{c} }^{2} \frac{1}{c + a}  }{ { { {x} }^{a} }^{2} }

=by \: taking \: log \: both \: sides

= \frac{1}{a + b} \times log \frac{ { {x}^{a} }^{2} }{ { { {x} }^{b} }^{2} }  \times  \frac{1}{b + c}  \times log\frac{ { {x}^{b} }^{2} }{ { {x}^{c} }^{2} }  \times \:    \frac{1}{c + a}  \times log \frac{ { {x}^{c} }^{2} }{ { {x}^{a} }^{2} }

 \frac{1}{c + a}  \times log  { {x}^{a} }^{2}  - log { {x}^{b} }^{2}  \times  \frac{1}{b + c}   \times log { {x}^{b} }^{2}  - log { {x}^{c} }^{2}  \times  \frac{1}{c + a}  \times log { {x}^{c} }^{2}  - log { {x}^{a} }^{2}

 \frac{1}{c + a}  \times2log {x}^{a}  - 2log {x}^{b}  \times  \frac{1}{b + c}  \times 2log {x}^{b}  - 2log {x}^{c}  \times  \frac{1}{c + a}  \times 2log {x}^{c}  - 2log {x}^{a}

= \frac{1}{c + a}  \times  \: 2a( {ax}^{a -1 } ) - 2b(b {x}^{b - 1} )  +    \frac{1}{b + c}   +  2b(b {x}^{b - 1} )  - 2c(c {x}^{c - 1}  )+  \frac{1}{c + a}  \times 2c (c {x}^{c - 1} ) - 2a( {ax}^{a - 1} )

 \frac{1}{c + a}  +  \frac{1}{b + c} +  \frac{1}{a + b}   = 0

method (2) by differentiation:

= \sqrt[a + b]{ \frac{ { {x}^{a} }^{2} }{ { {x}^{b} }^{2} } }  \times   \sqrt[b + c]{ \frac{ { {x}^{b} }^{2} }{ { {x}^{c} }^{2} } }  \times  \sqrt[c + a]{ \frac{ { {x}^{c} }^{2} }{ { {x}^{a} }^{?} } }

by \: using \: chain \: rule \:

 \frac{dy}{dx}  =  \frac{ { { {x}^{a} }^{2} }^{ \frac{1}{a + b} } }{ { {x}^{b} }^{2} }  \times  \frac{  { { {x}^{b} }^{2} }^{ \frac{1}{b + c} }  }{ { {x}^{c} }^{2} }  \times  \frac{  { { { {x} }^{c} }^{2} }^{ \frac{1}{c + a} }  }{ { {x}^{a} }^{2} }

 \frac{dy}{dx}  =  \frac{1}{a + b}  \times    \frac{ { {x}^{a} }^{2} }{ { {x}^{b} }^{2} }  \times  \frac{1}{b + c}  \times  \frac{ { {x}^{b} }^{2} }{ { {x}^{c} }^{2} }  \times  \frac{1}{c + a}  \times  \frac{ { {x}^{c} }^{2} }{ { {x}^{a} }^{2} }

 \frac{dy}{dx}  =  \frac{1}{a + b}  \times    \frac{2 {x}^{a} }{2 {x}^{b} }  \times  \frac{1}{b + c}  \times  \frac{2 {x}^{b} }{2 {x}^{c} }  \times  \frac{1}{c + a}  \times  \frac{2 {x}^{c} }{ {2 {x}^{a} } }

 \frac{dy}{dx}  =  \frac{1}{a + b}  \times  \frac{a {x}^{a - 1} }{b {x}^{b - 1} }   \times  \frac{1}{b + c}  \times  \frac{b {x}^{b - 1} }{c {x}^{c - 1} }  \times  \frac{1}{c + a}  \times  \frac{c {x}^{c - 1} }{ {ax}^{a - 1} }

 \frac{dy}{dx}  =  \frac{1}{a + b}  \times  \frac{1}{b + c}   \times  \frac{1}{c + a}  = 0

 \frac{dy}{dx}  = constant = 0

method (3)

 \sqrt[a + b]{ \frac{x { {a}^{2} }}{ { {x}^{b} }^{2} } }  \times  \sqrt[b + c]{ \frac{ { {x}^{b} }^{2} }{ { {x}^{c} }^{2} } }  \times   \sqrt[c + a]{ \frac{ { {x}^{c} }^{2} }{ { {x}^{a} }^{2} } }

 \frac{ { {x}^{a} }^{2}  \frac{1}{a + b} }{ { {x}^{b} }^{2} }  \times  \frac{ { {x}^{b} }^{2}  \frac{1}{b + c} }{ { {x}^{c} }^{2} }  \times  \frac{ { {x}^{c} }^{2} \frac{1}{c + a}  }{ { {x}^{a} }^{2} }

by \: taking \:  log_{e} \: both \: side

 =  \frac{1}{a + b}   \times   log\frac{ {x}^{ {a}^{2} } }{x {b}^{2} }   \times   \frac{1}{b + c}    \times  log \frac{ {x}^{ {b}^{2} } }{ { {x}^{c} }^{2} }     \times    \frac{1}{c + a}  \times  log\frac{ { {x}^{c} }^{2} }{ { {x}^{a} }^{2} }

 =  \frac{1}{a + b}  +  \frac{1}{b + c}  +  \frac{1}{c + a}  = 0

 =  \frac{b + c + a + b}{a(b + c) + b(b + c)}  +  \frac{1}{c + a}  = 0

 =  \frac{2b + c + a}{ab + ac +  {b}^{2} + bc }  +  \frac{1}{c + a}  = 0

c(2b + c + a) + ab + ac +  {b}^{2}  + b = 0

2cb +  {c}^{2}  + ca + ab + ac +  {b}^{2}  + bc = 0

( {c + b)}^{2}  = 0

c =  - b

Answered by nisha2425
3

Sorry for the irrelevant answer but plz change ur dp...

Similar questions