Math, asked by bhaijaan81, 5 months ago

answer it......... ....​

Attachments:

Answers

Answered by BrainlyEmpire
79

 \sf \: Before \: proceeding \: with \: any \: steps \: we \: need \: to \: bring \: up \: all \: the \: numbers \\  \sf \: out \: of \: ratio \: form \: and \: multiply \: them  \: with \: a \: common \: term \: lets \: say \: (x)

\\

 \sf \: If \: we \: multiply \: all  \: the \: terms \: with \: a \:  common \: (x) \: term \: we  \: get : \\  \\  \sf \: \bullet 9 \times x = 9x \\  \sf \bullet \: 11  \times x = 11x \\ \sf \bullet \: 8 \times x = 8x \\ \sf \bullet \: 12 \times x = 12x

\\

 \sf \: Now \: if \: we \: recollect \: the \: angle \: sum  \: property of \: quadrilaterals \: which \: states \colon \:  \\  \\  \boxed {\sf{The \:  sum \: of \: all \: the \: angles \: must \: be \:  = 360 \degree}}

\\

 \sf \: So \: now \: we \: will \: simply \: add \: all \: the  \: terms \: and \: simplify \: . \: The \: process  \: is \: \colon

 \sf \: 9x + 11x + 8x + 12x = 360 \degree \\ \sf 20x + 20x = 360 \degree \\ \sf 40 x  = 360 \degree \\  \\ \sf x =  \dfrac{360}{40}   \\  \\  \sf \: x =  \dfrac{ \cancel{360}}{ \cancel{40}}  \implies \: 9

\\

 \sf \: Now \: as \: we \: have \: got \: the \: value \: of \: (x) \: again \: we \: will \: multiply \: it \: with \: given \\  \sf \: to \: find \: the \: value \: of \: each \: angle \colon \\  \sf \bullet \: 9 \times 9 = 81 \\ \sf \bullet 11 \times 9 = 99 \\ \sf \bullet 8 \times 9 = 72 \\ \sf \bullet 12 \times 9 = 108

\\

 \sf \: Thus \: the \: above \: are \: the \: values \: of \: each \: angle \: . \: \\ \sf \: For \: verification \: we \: have \: to \: add \: all \: the \: angles . \\  \\  \sf \:  81 + 99 + 72 + 108 = 360 \\  \\  \sf \: 180 + 180 = 360 \\  \\  \sf \: 360 = 360

LHS = RHS!

Answered by manojpetal
0

Step-by-step explanation:

let Angel are 9x , 11x, 8x and 12x

we know total angel of quaedriatera 360

then 9x+11x+8x+12x =36o

or, 36x = 360

or, x = 10

angel are 90 , 110, 80and 120

Similar questions