Math, asked by saryka, 3 months ago

⇒ Answer it
⇒ Don't spam​

Attachments:

Answers

Answered by mathdude500
129

\large\underline{\bold{Given \:Question - }}

 \rm \: If \: A = 2 {sin}^{2}\theta - cos2\theta \: then \: value \: of \: A \: lies \: in \: interval

Solution :-

Identities Used :-

 \boxed{ \red{ \sf \:cos2x = 1 -  {2sin}^{2} x}}

 \boxed{ \red{ \sf \: - 1 \leqslant sinx \leqslant 1}}

Let's solve the problem now!!

Consider,

\rm :\longmapsto\:\: A = 2 {sin}^{2}\theta - cos2\theta

\rm :\longmapsto\:\: A = 2 {sin}^{2}\theta - (1 - 2 {sin}^{2} \theta)

\rm :\longmapsto\:\: A = 2 {sin}^{2}\theta - 1  +  2 {sin}^{2} \theta

\rm :\longmapsto\:\: A = 4 {sin}^{2}\theta - 1

We know that,

\rm :\longmapsto\: - 1 \leqslant sin\theta \leqslant 1

On squaring, we get

\rm :\implies\:0 \leqslant  {sin}^{2} \theta \leqslant 1

Multiply by 4 each term, we get

\rm :\longmapsto\:0 \leqslant 4 {sin}^{2} \theta \leqslant 4

On Subtracting 1 from each term, we get

\rm :\longmapsto\: 0 - 1 \leqslant 4 {sin}^{2}\theta - 1 \leqslant 4 - 1

\rm :\longmapsto\: -  1 \leqslant 4 {sin}^{2}\theta - 1 \leqslant 3

\bf\implies \: - 1 \leqslant A \leqslant 3

  \boxed{ \red{ \bf \:Hence, \:  option  \: (a) \:  is \:  correct.}}

Additional Information :-

 \boxed{ \red{ \sf \: - 1 \leqslant cos\theta \leqslant 1}}

 \boxed{ \red{ \sf \:cos2x =  {cos}^{2} x -  {sin}^{2}x}}

 \boxed{ \red{ \sf \:cos2x = 2 {cos}^{2} x - 1}}

 \boxed{ \red{ \sf \:sin2x = 2sinxcosx}}

Similar questions