Math, asked by Atharv158, 1 month ago

Answer it fast I will F0ll0w him​

Attachments:

Answers

Answered by Yugant1913
8

\huge {{\bf { \: question  }}}\\\huge\boxed{\underline{\bf {  {cos}^{2} θ +  \frac{1}{1 +  {cot}^{2} θ} = 1 }}}\\

Step-by-step explanation:

\huge\sf\mathbb\color{yellow} {given}

\huge\sf\mathbb\color{blue} { {cos}^{2}θ +  \frac{1}{1 +  {cot}^{2} }θ = 1  }

\huge\sf\mathbb\color{blue} {LHS = {cos}^{2} θ +  \frac{1}{ 1 +  {cot}^{2} θ} }

\huge\sf\mathbb\color{blue} { =  {cos}^{2} θ +  \frac{1}{cose {c}^{2} θ} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: [ 1 +  {cot}^{2}θ =  {cosec}^{2} θ ]

\huge\sf\mathbb\color{blue} { =  {cos}^{2} θ +  {sin}^{2} θ = 1 }\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \  \: [ \frac{1}{cosecθ}  = sinθ]

\huge\sf\mathbb\color{blue} {LHS  =  {cos}^{2} Θ +  {sin}^{2} Θ = 1 =RHS }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \huge\sf\mathbb\color{red} {hence \:proved }

.

Answered by Vaishnaviparve123
2

Answer:

mil gya na ansss hehe! !!!!!!!!

Similar questions