Physics, asked by Mounikamaddula, 9 months ago

Answer it fast ........ please ...​

Attachments:

Answers

Answered by shadowsabers03
16

From the circular disc let us consider an elemental hollow disc of inner radius \sf{r} and outer radius \sf{r+dr.}

\setlength{\unitlength}{2.5mm}\begin{picture}(5,5)\thicklines\qbezier(-7.9,0)(-7.5,7.5)(0,8.1)\qbezier(7.9,0)(7.5,7.5)(0,8.1)\qbezier(-7.9,0)(-7.5,-7.5)(0,-8.1)\qbezier(7.9,0)(7.5,-7.5)(0,-8.1)\qbezier(-3.95,0)(-3.75,3.75)(0,4.05)\qbezier(3.95,0)(3.75,3.75)(0,4.05)\qbezier(-3.95,0)(-3.75,-3.75)(0,-4.05)\qbezier(3.95,0)(3.75,-3.75)(0,-4.05)\qbezier(-4,0)(-3.8,3.8)(0,4.1)\qbezier(3.95,0)(3.8,3.8)(0,4.1)\qbezier(-3.95,0)(-3.8,-3.8)(0,-4.1)\qbezier(3.95,0)(3.8,-3.8)(0,-4.1)\put(0,0){\vector(1,0){4}}\put(0,0){\vector(1,1){5.84}}\put(1.3,-1.3){\sf{r}}\put(2.5,-1){\vector(1,0){1.3}}\put(5.3,-1){\vector(-1,0){1.3}}\put(4,-2.5){\sf{dr}}\put(5,3.7){\sf{a}}\end{picture}

The area of this hollow disc will be,

\longrightarrow\sf{dA=\pi(r+dr)^2-\pi r^2}

Since \sf{dr} is very small, \sf{(dr)^2} can be neglected.

\longrightarrow\sf{dA=\pi(r^2+2r\,dr)-\pi r^2}

\longrightarrow\sf{dA=2\pi r\,dr}

Let the circular disc be uniform so that the areal density is same for the whole disc and the hollow disc whose mass is \sf{dM.}

Given that \sf{\sigma(r)} is areal density. So,

\longrightarrow\sf{\sigma(r)=\dfrac{dM}{dA}}

\longrightarrow\sf{A+Br=\dfrac{dM}{2\pi r\,dr}}

\longrightarrow\sf{dM=2\pi(A+Br)r\,dr}

The hollow disc is just a ring, so its moment of inertia is,

\longrightarrow\sf{dI=dM\cdot r^2}

Then moment of inertia of the circular disc is,

\displaystyle\longrightarrow\sf{I=\int\limits_0^adM\cdot r^2}

\displaystyle\longrightarrow\sf{I=\int\limits_0^a2\pi(A+Br)r^3\,dr}

\displaystyle\longrightarrow\sf{I=2\pi\int\limits_0^a(A+Br)r^3\,dr}

\displaystyle\longrightarrow\sf{I=2\pi\int\limits_0^a(Ar^3+Br^4)\,dr}

\displaystyle\longrightarrow\sf{I=2\pi\left[\dfrac{Ar^4}{4}+\dfrac{Br^5}{5}\right]_0^a}

\displaystyle\longrightarrow\sf{I=2\pi\left(\dfrac{Aa^4}{4}+\dfrac{Ba^5}{5}\right)}

\displaystyle\longrightarrow\underline{\underline{\sf{I=2\pi a^4\left(\dfrac{A}{4}+\dfrac{aB}{5}\right)}}}


Anonymous: Perfect :D
Similar questions