answer it fast please.....and correctly
Attachments:
Answers
Answered by
0
Answer:B
Step-by-step explanation:
As, 128=2^7
And 16=2^4
So, 2^15+4n
Answered by
117
Solution :-
⟿ 128 * 16^(n + 2)
⟿ 2^7 * (2^4)^(n + 2)
using (a^m)^n = a^(m * n) Now,
⟿ 2^7 * 2^{4(n+2)}
⟿ 2^7 * 2^(4n + 8)
using a^m * a^n = a^(m + n) Now,
⟿ 2^(7 + 4n + 8)
⟿ 2^(15 + 4n) (Ans.) (B)
__________________
Extra :-
→ x^1 = x
→ x^0 = 1
→ x^(-1) = 1/x
→ x^m*x^n = x^(m+n)
→ x^m/x^n = x^(m-n)
→ (x^m)^n = x^(mn)
→ (xy)^n = x^n*y^n
→ (x/y)^n = x^n/y^n
→ x^(-n) = (1/x)^n
________________________
Similar questions