Math, asked by Mounikamaddula, 9 months ago

Answer it fast .....plsss....​

Attachments:

Answers

Answered by shadowsabers03
14

The following sum is given as assertion here.

\longrightarrow\sf{(1)+(1+2+4)+(4+6+9)+\,\dots\,+(81+90+100)=1000}

Each term in the series is formed as the following.

  • \sf{a_1=1=0^2+0\times1+1^2}

  • \sf{a_2=1+2+4=1^2+1\times2+2^2}

  • \sf{a_3=4+6+9=2^2+2\times3+3^2}

Final term is,

  • \sf{a_{10}=81+90+100=9^2+9\times10+10^2}

Our series contains 10 terms.

So \sf{r^{th}} term of the series is,

\longrightarrow\sf{a_r=(r-1)^2+r(r-1)+r^2}

\longrightarrow\sf{a_r=r^2-2r+1+r^2-r+r^2}

\longrightarrow\sf{a_r=3r^2-3r+1}

\longrightarrow\sf{a_r=r^3-r^3+3r^2-3r+1}

\longrightarrow\sf{a_r=r^3-(r^3-3r^2+3r-1)}

\longrightarrow\sf{a_r=r^3-(r-1)^3}

Hence our sum becomes,

\displaystyle\longrightarrow\sf{\sum_{r=1}^{10}\left(r^3-(r-1)^3\right)=1000}

\displaystyle\longrightarrow\sf{\sum_{r=1}^{10}\left(r^3-(r-1)^3\right)=10^3}

This can imply, for \sf{n\in\mathbb{N},}

\displaystyle\longrightarrow\sf{\sum_{r=1}^{n}\left(r^3-(r-1)^3\right)=n^3}

Let us check if it's true.

\displaystyle\longrightarrow\sf{\sum_{r=1}^{n}\left(r^3-(r-1)^3\right)=\sum_{r=1}^{n}\left(3r^2-3r+1\right)}

\displaystyle\longrightarrow\sf{\sum_{r=1}^{n}\left(r^3-(r-1)^3\right)=3\sum_{r=1}^{n}r^2-3\sum_{r=1}^{n}r+\sum_{r=1}^{n}1}

\displaystyle\longrightarrow\sf{\sum_{r=1}^{n}\left(r^3-(r-1)^3\right)=3\cdot\dfrac{n(n+1)(2n+1)}{6}-3\cdot\dfrac{n(n+1)}{2}+n}

\displaystyle\longrightarrow\sf{\sum_{r=1}^{n}\left(r^3-(r-1)^3\right)=\dfrac{n(n+1)(2n+1)-3n(n+1)+2n}{2}}

\displaystyle\longrightarrow\sf{\sum_{r=1}^{n}\left(r^3-(r-1)^3\right)=\dfrac{n[(n+1)(2n+1-3)+2]}{2}}

\displaystyle\longrightarrow\sf{\sum_{r=1}^{n}\left(r^3-(r-1)^3\right)=\dfrac{2n[(n+1)(n-1)+1]}{2}}

\displaystyle\longrightarrow\sf{\sum_{r=1}^{n}\left(r^3-(r-1)^3\right)=n(n^2-1+1)}

\displaystyle\longrightarrow\sf{\sum_{r=1}^{n}\left(r^3-(r-1)^3\right)=n^3}

So it's true.

Therefore, both (A) and (R) are true, and (R) is correct explanation of (A).


amitkumar44481: Awesome :-)
Similar questions