Math, asked by prajna1874, 2 months ago

answer it please CORRECTLY​

Attachments:

Answers

Answered by BrainlyProgrammer
14

Question:-

Solve:

 \sf  \dfrac{5}{x + 4}  +  \dfrac{3}{x - 4}  =  \dfrac{2x}{ {x}^{2} - 16 }

Solution:-

 \sf  \dfrac{5}{x + 4}  +  \dfrac{3}{x - 4}  =  \dfrac{2x}{ {x}^{2} - 16 }

  \implies\dfrac{5(x  -  4) + 3(x  + 4)} {(x + 4)(x - 4)} =  \dfrac{2x}{ {x}^{2} - 16 }

  \implies\dfrac{5x  -  20 + 3x  + 12} {( {x}^{2}  - 16)}  = \dfrac{2x}{ {x}^{2} - 16 }

  \implies\dfrac{8x  - 8} {( {x}^{2}  - 16)}  = \dfrac{2x}{ ({x}^{2} - 16 )}

  \implies\dfrac{8x  - 8} { \cancel{( {x}^{2}  - 16)}}  =  \dfrac{2x}{ \cancel{ ({x}^{2} - 16 )} }

 \implies \: 8(x - 1) = 2x

 \implies(x - 1) =  \dfrac{ \not2x}{ \not8}   \\ \implies \: x - 1 =  \dfrac{x}{4}  \\  \implies4(x - 1) = x \\ \implies4x - 4 = x \\ \implies4x - x = 4 \\  \implies3x = 4  \\   \\ \implies\pink{\bold{\boxed{\boxed{ \orange{\therefore \: x =  \dfrac{4}{3}}}}}}

Correct answer:-

  •  \large{\boxed{\boxed{ \bold{ \orange{x =  \dfrac{4}{3}}}}}}
Answered by Anonymous
7

\Large{\underbrace{\underline{\sf{Understanding\: the\: Question}}}}

Here in this question, concept of lowest common multiple (LCM) is used. The question is about finding value of x from the faction terms. We can find the value of x by using LCM and transportation of LHS and RHS methods.

So let's start!

\rule{270}{2}

\sf\longrightarrow\dfrac{5}{x+4}+\dfrac{3}{x-4}=\dfrac{2x}{x^2-16}

Take LCM from denominators

\sf\longrightarrow\dfrac{5(x-4)+3(x+4)}{(x+4)(x-4)}=\dfrac{2x}{x^2-16}

Now simplify numerator

\sf\longrightarrow\dfrac{5x-20+3x+12}{(x+4)(x-4)}=\dfrac{2x}{x^2-16}

\sf\longrightarrow\dfrac{8x-8}{(x+4)(x-4)}=\dfrac{2x}{x^2-16}

Now we can see that denominator is in the form (a+b)(a-b)=a²-b² [an algeberic identity] , where a=x and b=4.

So:-

\sf\longrightarrow\dfrac{8x-8}{[(x^2)-(4^2)]}=\dfrac{2x}{x^2-16}

Now simplify denominator

\sf\longrightarrow\dfrac{8x-8}{x^2-16}=\dfrac{2x}{x^2-16}

Now transport LHS from denominator to numerator of RHS.

\sf\longrightarrow 8x-8=\dfrac{2x(x^2-16)}{x^2-16}

Now we can cancel out same numerator and denominator from RHS.

\sf\longrightarrow 8x-8=2x

Now transport -8 to RHS.

\sf\longrightarrow 8x-2x=8

\sf\longrightarrow 6x=8

Now transport 6 from LHS to RHS

\sf\longrightarrow x=\dfrac{8}{6}

Now make it into Simplest from

\sf\longrightarrow x=\dfrac{\not{8}}{\not6}

\large\underline{\boxed{\sf {\red{x=\dfrac{4}{3}}}}}\bigstar

\large\sf{The\: Required \:value \:of\: x=\dfrac{4}{3}}

\rule{270}{2}

Important thing to remember while transportation of LHS and RHS.

• Whenever you transport a positive digit to another side, it will change into negative.

• Whenever you transport a negative digit to another side, it will change into positive.

• Whenever you transport denominator to other side, it will change into numerator.

• Whenever you transport numerator to another side, it will change into denominator.

\rule{270}{2}

Similar questions