Math, asked by Anonymous, 8 months ago

answer it please no spam

Attachments:

Answers

Answered by MaheswariS
2

\underline{\textsf{To find:}}

\textsf{The value of}

\mathsf{\displaystyle[\dfrac{1+cos\frac{\pi}{8}+i\,sin\frac{\pi}{8}}{1+cos\frac{\pi}{8}-i\,sin\frac{\pi}{8}}]^8}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{\displaystyle[\dfrac{1+cos\frac{\pi}{8}+i\,sin\frac{\pi}{8}}{1+cos\frac{\pi}{8}-i\,sin\frac{\pi}{8}}]^8}

\boxed{\begin{minipage}{3cm}$\textsf{Take,}\\\\\mathsf{z=cos\frac{\pi}{8}+i\,sin\frac{\pi}{8}}\\\\\textsf{Then,}\\\\\mathsf{\dfrac{1}{z}=cos\frac{\pi}{8}-i\,sin\frac{\pi}{8}}$\end{minipage}}

\mathsf{=\displaystyle[\dfrac{1+z}{1+\dfrac{1}{z}}]^8}

\mathsf{=\displaystyle[\dfrac{1+z}{\dfrac{1+z}{z}}]^8}

\mathsf{=\displaystyle[1+z{\times}\dfrac{z}{1+z}]^8}

\mathsf{=z^8}

\mathsf{=(cos\frac{\pi}{8}+i\,sin\frac{\pi}{8})^8}

\textsf{Applying Demovire's theorem}

\mathsf{=cos\frac{8\pi}{8}+i\,sin\frac{8\pi}{8}}

\mathsf{=cos\pi+i\,sin\pi}

\mathsf{=-1}

\implies\boxed{\mathsf{\displaystyle[\dfrac{1+cos\frac{\pi}{8}+i\,sin\frac{\pi}{8}}{1+cos\frac{\pi}{8}-i\,sin\frac{\pi}{8}}]^8=-1}}

\underline{\textsf{Answer:}}

\textsf{Option (2) is correct}

Answered by brainlycamila
1

Answer:

hope it helps you plz Mark as brainliest follow me on

Step-by-step explanation:

Answer. Answer: When computer programs store data in variables, each variable must be assigned a specific data type. Some common data types include integers, floating point numbers, characters, strings, and arrays. ...

Similar questions