Math, asked by kanhujena79, 10 months ago

answer it
plese answer in your copy

Attachments:

Answers

Answered by Brâiñlynêha
20

Solution !

\sf \ Simplify \\ \\ \sf \ 1.\  i] \  \dfrac{x^{-9}\ y^2}{x^{-7}\ y^8}\\ \\ \sf ii] (a^{-2}- b^{-2})^{-1}\\ \\ \sf 2] Find\ value \ of \ m\\ \\ \sf (-3)^{m+1} \times (-3)^5= (-3)^7

\underline{\bigstar{\it\ \ Question\ 1 \ :-}}

Formula used !

\sf\bullet a^m\times a^n= a^{(m+n)}\\ \\ \sf\bullet a^{-n}= \dfrac{1}{a^n}\\ \\ \bullet\sf \dfrac{a^n}{a^{-m}}= a^n\times a^m

\sf i]\ \  \ \dfrac{x^{-9}\ y^3}{x^{-7}\ y^8}\\ \\ \longrightarrow\sf   x^{-9}\ y^3 \times x^7 \ y^{-8}\\ \\ \longrightarrow\sf x^{-9+7}\times y^{3-8}\\ \\ \longrightarrow\sf x^{-2}\times y^{-5}\\ \\ \longrightarrow\sf \dfrac{1}{x^2 \ y^5}

\boxed{\sf {\dfrac{1}{x^2\ y^5}}}

\sf ii] \ \ \ \ (a^{-2}-b^{-2})^{-1}\\ \\ \longrightarrow\sf  \bigg(\dfrac{1}{a^2}-\dfrac{1}{b^2}\bigg)^{-1}\\ \\ \longrightarrow\sf \bigg(\dfrac{b^2-a^2}{a^2\ b^2}\bigg)^{-1}\\ \\ \longrightarrow\sf \dfrac{a^2\ b^2}{b^2-a^2}

\boxed{\sf \dfrac{a^2\ b^2}{b^2-a^2}}

\underline{\bigstar{\it\ \ Question\ 2 \ :-}}

\sf  \ \ (-3)^{m+1} \times (-3)^5= (-3)^7\\ \\ \longrightarrow\sf  (-3)^{m+1+5}=(-3)^7\\ \\ \longrightarrow\sf\ (-3)^{m+6}= (-3)^7\\ \\ \sf \ \ Their \ base \ are\ same, \ take \ power  \\ \\ \longrightarrow\sf m+6= 7\\ \\ \longrightarrow\sf m= 7-6\\ \\ \longrightarrow\sf m=1

\boxed{\sf\ \ m= 1}

Answered by rohit301486
1

Solution !

\sf \ Simplify

\sf \ 1.\ i] \ \dfrac{x^{-9}\ y^2}{x^{-7}\ y^8}

\sf ii] (a^{-2}- b^{-2})^{-1}

 \sf 2] Find\ value \ of \ m

\sf (-3)^{m+1} \times (-3)^5= (-3)^7

\underline{\bigstar{\it\ \ Question\ 1 \ :-}}

Formula used !

\sf\bullet  \:  \: a^m\times a^n= a^{(m+n)}

 \sf\bullet  \:  \: a^{-n}= \dfrac{1}{a^n}

 \bullet\sf  \:  \: \dfrac{a^n}{a^{-m}}= a^n\times a^m

\sf i]\ \ \ \dfrac{x^{-9}\ y^3}{x^{-7}\ y^8}

\longrightarrow\sf x^{-9}\ y^3 \times x^7 \ y^{-8}

 \longrightarrow\sf x^{-9+7}\times y^{3-8}

 \longrightarrow\sf x^{-2}\times y^{-5}

 \longrightarrow\sf \dfrac{1}{x^2 \ y^5}

\boxed{\sf {\dfrac{1}{x^2\ y^5}}}

\sf ii] \ \ \ \ (a^{-2}-b^{-2})^{-1}

 \longrightarrow\sf \bigg(\dfrac{1}{a^2}-\dfrac{1}{b^2}\bigg)^{-1}

\longrightarrow\sf \bigg(\dfrac{b^2-a^2}{a^2\ b^2}\bigg)^{-1}

 \longrightarrow\sf \dfrac{a^2\ b^2}{b^2-a^2}

\boxed{\sf \dfrac{a^2\ b^2}{b^2-a^2}}

\underline{\bigstar{\it\ \ Question\ 2 \ :-}}

\sf \ \ (-3)^{m+1} \times (-3)^5= (-3)^7

\longrightarrow\sf (-3)^{m+1+5}=(-3)^7

\longrightarrow\sf\ (-3)^{m+6}= (-3)^7

\sf \ \ Their \ base \ are\ same, \ take \ power

\longrightarrow\sf m+6= 7

\longrightarrow\sf m= 7-6

\longrightarrow\sf m=1

\boxed{\sf\ \ m= 1}

Similar questions