Math, asked by kiara20, 9 months ago

ANSWER IT PLZ


& GOOD NIGHT ✌️​

Attachments:

Answers

Answered by Anonymous
72

Question :

If y= e{}^{\frac{y}{x}}

Prove that :

 \frac{dy}{dx}  =  \frac{y {}^{2} }{x(y - x)}

Solution :

y = e{}^{\frac{y}{x}}

Now take log on both sides

 \implies log(y)  =  \dfrac{y}{x}  log_{e}(e)

 \implies  log(y)  =  \dfrac{y}{x}

Now differinate with respect to x

 \implies \frac{1}{y}  \times  \frac{dy}{dx}  =  \frac{1}{x} \times  \frac{dy}{dx}  +  \frac{ - 1}{x {}^{2}  }  \times y

 \implies \frac{dy}{dx} ( \frac{1}{y} -  \frac{1}{x}) =  \frac{ - y}{x {}^{2} }

 \implies \frac{dy}{dx} ( \frac{x - y}{xy} ) =  \frac{ - y}{x {}^{2} }

 \implies \frac{dy}{dx}  =  \frac{ - y(yx)}{ x{}^{2}(x - y) }

 \implies \dfrac{dy}{dx}  =  \dfrac{y {}^{2} }{x(y - x)}

Hence proved!

______________

Some Formulas related to Differention:

1) \frac{d( log(x)) }{dx}  =  \frac{1}{x}

2) \frac{d(x {}^{n}) }{dx}  = nx {}^{n - 1}

Answered by Anonymous
1

Answer:

good night...............................

Similar questions