Math, asked by shivani1557, 9 months ago


answer it plz plz plz ​

Attachments:

Answers

Answered by hanshraj26
3

10) Given

A polynomial ax³+3x²-bx-6

And their zeroes is -6 and -1

To find

value of a,b and third zeroes

Solution

Let the third zeroes of the polynomial be

putting the value of zeroes X=(-1,-2) in polynomial

First X= -1

f(X}=ax³+3x²-bx-6 =0

f(-1)=-a+3+b-6

=>a+b=3______(1)

second X = -2

F(X)=ax³+3x²-bx-6=0

f(-6)=-8a+12+2b-6

=>-8a+2b=-6

=>4a-b=3

From equation (1) and (2)

a+b=3

4a-b=3

___________

5a=6

a=6/5

b=9/5

Now we know

\alpha.\beta\gamma=\frac{-d}{a}

2\gamma=5

8) Since √3 and -√3 are zeros , x-√3 and x+√3 are factors of the polynomial x^4-3x³-x²+9x-6 .

(x+√3)(x-√3) = x²-(√3)² [ (a+b)(a-b)=a²-b²]

                     = x²- 3

Now divide the polynomial x^4-3x³-x²+9x-6 by (x²-3)

=>  

                 x² - 3x + 2

              -----------------------

      x²-3 ║ x^4-3x³-x²+9x-6 

                 x^4      -3x²

                -           +

              --------------------------

                    0-3x³+2x²+9x-6

                      -3x³       +9x

                      +            -

             ---------------------------

                         0+2x²+0-6

                             2x²    -6

                            -         +

             ---------------------------

                             0       0

           

=>x^4-3x³-x²+9x-6 =  (x²-3x+2)(x²- 3)

 

=>(x²-3x+2) = x²-2x-x+2)

                    =x(x-2)-1(x-2)

                    =(x-2)(x-1)

                   =>x=2,1

=>x^4-3x³-x²+9x-6 = (x-2)(x-1)(x+√3)(x-√3) 

Therefore the zeros are 2,1,√3 and -√3

   

14) ( see question 14 I have copied from internet it related to your question pls change no 15 instead of 6)

   14) The relation between the zeroes and coefficients of a quadratic equation are as follows:

For every polynomial of form ax²+bx+c

Now the given polynomial is

P(x) =x²+8x+6

So for this polynomial

Now,

We are asked a polynomial whose zeroes are

Now let the polynomial be f(x)

So,

For f(x) the sum of the zeroes is

Now, for the product of zeroes of f(x)

Now,

For f(x)

Sum of roots = 44/6

Product of zeroes = - 1/6

The structure of the polynomial is

K(x²-(sum of zeroes) x +(product of zeroes)

So, f(x) = k(x²-44/6-1/6)

Or, f(x) = 6x²-44x-1

When k = 6

15) I don't know sorry sis

pls follow me and mark me brainlest

Attachments:
Similar questions