Math, asked by Anonymous, 10 months ago

Answer it properly please

Attachments:

Answers

Answered by Anonymous
53

Answer:

m - n = 1

Step-by-step explanation:

\large \text{$\dfrac{9^n\times3^2\times\left((3)^{\dfrac{-n}{2}\right)^{-2}-27^{n}}}{3^{3m}\times2^3}=\dfrac{1}{27}$}\\\\\\\large \text{$\implies \dfrac{3^{2n}\times3^2\times\left((3)^{\dfrac{-n}{2}\times{-2}\right)-3^{3n}}}{3^{3m}\times2^3} =\dfrac{1}{3^3}$}\\\\\\\large \text{$\implies \dfrac{3^{2n}\times3^2\times3^{n}-3^{3n}}{3^{3m}\times2^3} =\dfrac{1}{3^3}$}\\\\\\\large \text{Taking out $3^{3n}$ common}

\large \text{$\implies \dfrac{3^{3n}\left(3^2-1\right)}{3^{3m}\times2^3} =\dfrac{1}{3^3}$}\\\\\\\large \text{$\implies \dfrac{3^{3n}\left(8\right)}{3^{3m}\times2^3} =\dfrac{1}{3^3}$}\\\\\\\large \text{$\implies \dfrac{3^{3n}\left(2^3\right)}{3^{3m}\times2^3} =\dfrac{1}{3^3}$}\\\\\\\large \text{\implies $2^3$ get cancel out}\\\\\\\large \text{$\implies \dfrac{3^{3n}}{3^{3m}} =\dfrac{1}{3^3}$}\\\\\\\large \text{$\implies \dfrac{1}{3^{3m}\times3^{3n}} =\dfrac{1}{3^3}$}

\large \text{$\implies \dfrac{1}{3^{3m-3n}} =\dfrac{1}{3^3}$}\\\\\\\large \text{Comparing both side we get}\\\\\\\large \text{$3m-3n=3$}\\\\\\\large \text{$m-n=1$}

Thus we get answer.

Answered by Anonymous
15

Question :-

If

\large{ \sf  \dfrac{9^n \times 3^2 \times  \left(3^{ \frac{ - n}{2} } \right)^{ - 2} -27^{n} }{3^{3m} \times 2^3 } =  \dfrac{1}{27} }

then m - n

Answer :-

m - n = 1

Solution :-

\large{ \sf  \dfrac{9^n \times 3^2 \times  \left(3^{ \frac{ - n}{2} } \right)^{ - 2} -27^{n} }{3^{3m} \times 2^3 } =  \dfrac{1}{27} }

\large{ \sf \dfrac{(3^2)^n \times 3^2 \times  \left(3^{ \frac{ - n}{2} } \right)^{ - 2} - (3^3)^n }{3^{3m} \times 2^3 } =  \dfrac{1}{3^3} }

[ Because 9 can be written as 3² , 27 as 3³]

 \large{ \sf \dfrac{3^{2(n)} \times 3^2 \times 3^{- n( - 1)}- 3^{3(n)}}{3^{3m} \times 2^3 } =  \dfrac{1}{3^3} }

  \bf  \because  (a^m)^n = a^{mn}

 \large{ \sf \dfrac{3^{2n} \times 3^2 \times 3^{n}- 3^{3n}}{3^{3m} \times 2^3 } =  \dfrac{1}{3^3} }

\large{ \sf \dfrac{3^{2n} \times 3^{n} \times 3^2  -  3^{3n}}{3^{3m} \times 2^3 } =  \dfrac{1}{3^3} }

\large{ \sf \dfrac{3^{2n + n} \times 3^2 -  3^{3n}}{3^{3m} \times 2^3 } =  \dfrac{1}{3^3} }

 \bf  \because (a^m)^n = a^{mn}

\large{ \sf \dfrac{3^{3n} \times 3^2  -  3^{3n}}{3^{3m} \times 2^3 } =  \dfrac{1}{3^3} }

Taking  \bf 3^n as common

\large{ \sf \dfrac{3^{3n}(3^2 - 1)}{3^{3m} \times 8 } =  \dfrac{1}{3^3} }

\large{ \sf \dfrac{3^{3n}(9 - 1)}{3^{3m} \times 8 } =  \dfrac{1}{3^3} }

\large{ \sf \dfrac{3^{3n}( \cancel 8)}{3^{3m} \times  \cancel 8 } =  \dfrac{1}{3^3} }

\large{ \sf \dfrac{3^{3n}}{3^{3m} } =  \dfrac{1}{3^3} }

\large{ \sf 3^{3n - 3m}  =  \dfrac{1}{3^3} }

 \bf  \because  \dfrac{ a^{m} }{ {a}^{n} } = a^{m - n}

\large{ \sf 3^{3n - 3m}  = 3^{ - 3}}

 \bf  \because  \dfrac{1}{ {a}^{n} } = a^{- n}

\large{ \sf 3n - 3m  = - 3}

 \bf  \because  {a}^{m}  =  {a}^{n}  \implies m = n

\large{ \sf n - m  =  -  \dfrac{3}{3} }

\large{ \sf n - m  =  - 1}

\large{ \sf n  =  - 1 + m}

\large{ \sf 0  =  - 1 + m - n}

\large{ \sf 1 = m - n}

\large{ \sf  \implies m - n = 1}

Laws of exponents used :-

 \tt  \rightarrow (a^m)^n = a^{mn}

 \tt  \rightarrow  \dfrac{ a^{m} }{ {a}^{n} } = a^{m - n}

 \tt \rightarrow  \dfrac{1}{ {a}^{n} } = a^{- n}

 \tt  \rightarrow  {a}^{m}  =  {a}^{n}  \implies m = n

Similar questions