Answer it :-
Solve using identity
(3x + 4 + 2)^2 = ?
(2x + 9)^2 = ?
(81)^2 = ?
(2x + 5)(2x - 5) = ?
Answers
Answered by
5
❣ (3x + 4 + 2)^2
using ➡ (a+b+c)^2 = a^2+b^2+c^2+2ab+2bc+2ca
➡ (3x)^2+(4)^2+(2)^2+2(3x)(4)+2(4)(2)+2(2)(3x)
➡ 9x^2 + 16 + 4 + 24x + 16 + 12x
➡ 9x^2 + 36 + 36x
❣ (2x + 9)^2
using (a + b)^2 = a^2 + b^2 + 2ab
➡ (2x)^2 + (9)^2 + 2(2x)(9)
➡ 4x^2 + 81 + 36x
❣ (81)^2 = (80 + 1)^2
using (a + b)^2 = a^2 + b^2 + 2ab
➡ (80)^2 + (1)^2 + 2(80)(1)
➡ 6400 + 1 + 160
➡ 6561
❣ (2x + 5)(2x - 5)
using (a + b)(a - b) = a^2 - b^2
➡ (2x)^2 - (5)^2
➡ 4x^2 - 25
using ➡ (a+b+c)^2 = a^2+b^2+c^2+2ab+2bc+2ca
➡ (3x)^2+(4)^2+(2)^2+2(3x)(4)+2(4)(2)+2(2)(3x)
➡ 9x^2 + 16 + 4 + 24x + 16 + 12x
➡ 9x^2 + 36 + 36x
❣ (2x + 9)^2
using (a + b)^2 = a^2 + b^2 + 2ab
➡ (2x)^2 + (9)^2 + 2(2x)(9)
➡ 4x^2 + 81 + 36x
❣ (81)^2 = (80 + 1)^2
using (a + b)^2 = a^2 + b^2 + 2ab
➡ (80)^2 + (1)^2 + 2(80)(1)
➡ 6400 + 1 + 160
➡ 6561
❣ (2x + 5)(2x - 5)
using (a + b)(a - b) = a^2 - b^2
➡ (2x)^2 - (5)^2
➡ 4x^2 - 25
stargirl9:
Thanks
Answered by
3
4 .(2x + 5)(2x-5)
(2x)(2x)+(2x)(-5)+(5)(2x)+(5)(-5)
4x^ -10x + 10x - 25
4x^ + 0 - 25
4x^- 25
3. (81)^2 = 6561
Similar questions