Math, asked by veronica0104, 9 months ago

answer it with a attachment....​

Attachments:

Answers

Answered by ITzBrainlyGuy
0

Answer:

given equation is a quadratic equation

 \sqrt{3}  {x}^{2}  + 14x - 5 \sqrt{3}  = 0 \\

we know that

roots of quadratic equation

 =  \frac{ - b ±  \sqrt{ {b}^{2}-4ac } }{2a}

now,

substitute in the above formula

 \frac{ - 14±  \sqrt{ {14}^{2} - 4( \sqrt{3})( - 5 \sqrt{3} )  } }{2 \sqrt{3} }

 =  \frac{-14±  \sqrt{196 + 60}  }{2 \sqrt{3} }

 =  \frac{ - 14 ±  \sqrt{256} }{2 \sqrt{3} }

 =  \frac{ - 14 +  \sqrt{256} }{2} (or) \frac{ - 14 -  \sqrt{256} }{2 \sqrt{3} }

  = \frac{ - 14 + 16}{2 \sqrt{3} } (or) \frac{ - 14  -   16}{2 \sqrt{3} }

 =  \frac{2}{2 \sqrt{3} } (or) \frac{ - 30}{2 \sqrt{3} }

 =  \frac{1}{ \sqrt{3 } }( or) \frac{ - 30}{2 \sqrt{3} }

rationalize the denominators of the roots

  = \frac{ \sqrt{3} }{3} (or) - 5 \sqrt{3}

now,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x =  \frac{ \sqrt{3} }{3}  \\

(or)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x =  - 5 \sqrt{3}

Answered by Anonymous
2

Hi

Inga answer irruku

   \frac{ \sqrt{3} }{?3}

Similar questions