Math, asked by alonegurl, 9 months ago

answer it

wrong answer will be reported​

Attachments:

Answers

Answered by Cosmique
5

To prove :

\dfrac{sin\theta + sin\;2\theta}{1+cos\theta+cos\;2\theta}=tan\theta

Proof :

Taking LHS

\implies LHS = \dfrac{sin\theta + sin\;2\theta}{1+cos\theta+cos\;2\theta}

using trigonometric identity

sin 2θ = 2 sinθ cosθ

\implies LHS = \dfrac{sin\theta + (2 \;sin\theta\; cos\theta)}{1+cos\theta+cos\;2\theta}

using trigonometric identity

cos 2θ = 2 cos²θ - 1

\implies LHS = \dfrac{sin\theta + 2 \;sin\theta\; cos\theta}{1+cos\theta+(2cos^2\theta-1)}

\implies LHS = \dfrac{sin\theta + 2 \;sin\theta\; cos\theta}{1+cos\theta+2cos^2\theta-1}

\implies LHS = \dfrac{sin\theta + 2 \;sin\theta\; cos\theta}{cos\theta+2cos^2\theta}

\implies LHS = \dfrac{sin\theta ( 1 + 2 \;cos\theta)}{cos\theta( 1 + 2cos\theta)}

1 + 2 cos θ will be cancelled

\implies LHS = \dfrac{sin\theta}{cos\theta}

\implies LHS = tan\theta = RHS

Hence, proved.

More related trigonometric identities

\longrightarrow sin(-x) = -sin x

\longrightarrow cos (-x) = cos x

\longrightarrow cos(x+y) = cos x \; cos y - sinx \;sin y

\longrightarrow cos ( x - y ) = cos x \; coy + sinx \; siny

\longrightarrow sin(x+y) = sinx\;cosy+cosx\;siny

\longrightarrow sin(x-y) = sinx\;cosy - cosx\;siny

\longrightarrow tan(x+y) = \dfrac{tanx+tany}{1-tanx\;tany}

\longrightarrow tan(x-y) = \dfrac{tanx - tany }{1+tanx\;tany}

\longrightarrow cot(x+y) = \dfrac{cotx\;coty-1}{cot y + cot x }

\longrightarrow cot (x - y ) = \dfrac{cotx\;coty+1}{coty-cotx}

Similar questions