Math, asked by TakenName, 11 months ago

Answer kindly please

(\frac{1}{x} +\frac{6}{y} )(x+y)=14 is true for positive integer x and y.

Then, what is the value of (4x+y)(\frac{1}{x} +\frac{1}{y} )?

Answers

Answered by playnplaybegone
6

Answer:\frac{35}{3} or 10

Step-by-step explanation:

If (\frac{1}{x} +\frac{6}{y} )(x+y)=14,

then 1+\frac{y}{x} +\frac{6x}{y} +6=14

Let's take t=\frac{x}{y}

If we substitute, we get 6t-7+\frac{1}{t} =0

First take t\neq 0, then multiply t

The quadratic equation 6t^2-7t+1=0 has two solution t=\frac{1}{6}, t=1

(4x+y)(\frac{1}{x} +\frac{1}{y} ) is expanded.

We have 4+\frac{4x}{y} +\frac{y}{x}+1, or 4t+\frac{1}{t} +5

If we consider t=\frac{1}{6}

The value will be \frac{35}{3}

If we consider t=1

The value will be 10

Answered by Btsfanlover1
5

Answer:

\frac{35}{3}335 or 1010

Step-by-step explanation:

If (\frac{1}{x} +\frac{6}{y} )(x+y)=14(x1+y6)(x+y)=14 ,

then 1+\frac{y}{x} +\frac{6x}{y} +6=141+xy+y6x+6=14

Let's take t=\frac{x}{y}t=yx

If we substitute, we get 6t-7+\frac{1}{t} =06t−7+t1=0

First take t\neq 0t=0 , then multiply tt

The quadratic equation 6t^2-7t+1=06t2−7t+1=0 has two solution t=\frac{1}{6}t=61 , t=1t=1

(4x+y)(\frac{1}{x} +\frac{1}{y} )(4x+y)(x1+y1) is expanded.

We have 4+\frac{4x}{y} +\frac{y}{x}+14+y4x+xy+1 , or 4t+\frac{1}{t} +54t+t1+5

If we consider t=\frac{1}{6}t=61

The value will be \frac{35}{3}335

If we consider t=1t=1

The value will be 1010

please support me yarr and mark as Brainliiests

Similar questions