Math, asked by peehusingh66, 4 months ago

answer me fast as possible​

Attachments:

Answers

Answered by VishnuPriya2801
5

Question:-

If in ∆ABC , 2∠A = 3∠B = 6∠C. Find the ∠A , ∠B and ∠C of ∆ABC.

Answer:-

Given:

In a ∆ABC ,

2∠A = 3∠B = 6∠C

Let, 2∠A = 3∠B = 6∠C = k

  • 2∠A = k ⟹ ∠A = k/2

  • 3∠B = k ⟹ ∠B = k/3

  • 6∠C = k ⟹ ∠C = k/6

We know that,

Sum of three angles of a triangle = 180°

⟹ ∠A + ∠B + ∠C = 180°

⟹ k/2 + k/3 + k/6 = 180°

⟹ (3k + 2k + k) / 6 = 180°

⟹ 6k/6 = 180°

⟹ k = 180°

  • A = k/2 = 180°/2 = 90°

  • B = k/3 = 180°/3 = 60°

  • C = k/6 = 180°/6 = 30°

Answered by mathdude500
1

\begin{gathered}\begin{gathered}\bf \: Given\:-\begin{cases} &\sf{In  \: \triangle \:  ABC} \\ &\sf{2 \angle \: A = 3\angle \: B = 6\angle \: C} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To\:find \: the \: values \: of \: \:- \begin{cases} &\sf{\angle \: A}  \\ &\sf{\angle \: B}  \\ &\sf{\angle \: C}  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

\begin{gathered}\begin{gathered}\bf \:Let- \begin{cases} &\sf{2 \angle \: A = 3\angle \: B = 6\angle \: C = k}  \end{cases}\end{gathered}\end{gathered}

\rm :\implies\: \boxed{ \pink{ \bf \:  \angle \: A\:  =  \tt \: \dfrac{k}{2} }}

\rm :\implies\: \boxed{ \pink{ \bf \: \angle \: B  \:  =  \tt \: \dfrac{k}{3} }}

\rm :\implies\: \boxed{ \pink{ \bf \: \angle \: C \:  =  \tt \: \dfrac{k}{6} }}

Now,

We know, that

  • Sum of angles of a triangle is supplementary.

So,

 \longrightarrow{\blue{ \bf \: In \:  \triangle \:  ABC}}

\rm :\implies\:\angle \: A \:  + \angle \: B \:  + \angle \: C = 180 \degree

\rm :\implies\:\dfrac{k}{2}  + \dfrac{k}{3}  + \dfrac{k}{6}  = 180 \degree

\rm :\implies\:\dfrac{3k + 2k + k}{6}  = 180 \degree

\rm :\implies\:\dfrac{6k}{6}  = 180 \degree

\rm :\implies\:k \:  =  \: 180 \degree

Hence,

\rm :\implies\: \boxed{ \pink{ \bf \:  \angle \: A\:  =  \tt \: \dfrac{k}{2} = \dfrac{180}{2}  = 90 \degree }}

\rm :\implies\: \boxed{ \pink{ \bf \:  \angle \: B\:  =  \tt \: \dfrac{k}{3} = \dfrac{180}{3}  = 60 \degree }}

\rm :\implies\: \boxed{ \pink{ \bf \:  \angle \: C\:  =  \tt \: \dfrac{k}{6} = \dfrac{180}{6}  = 30 \degree }}

More information :-

Properties of a triangle

  • A triangle has three sides, three angles, and three vertices.

  • The sum of all internal angles of a triangle is always equal to 180°. This is called the angle sum property of a triangle.

  • The sum of the length of any two sides of a triangle is greater than the length of the third side.

  • The side opposite to the largest angle of a triangle is the largest side.

  • Any exterior angle of the triangle is equal to the sum of its interior opposite angles. This is called the exterior angle property of a triangle.

Based on the angle measurement, there are three types of triangles:

  • Acute Angled Triangle : A triangle that has all three angles less than 90° is an acute angle triangle.

  • Right-Angled Triangle : A triangle that has one angle that measures exactly 90° is a right-angle triangle.

  • Obtuse Angled Triangle : triangle that has one angle that measures more than 90° is an obtuse angle triangle.

Similar questions