Math, asked by twinklekatiyar, 8 months ago

answer me fast if you know...if you don't know so don't do anything.​

Attachments:

Answers

Answered by dna63
2

Step-by-step explanation:

\sf{LHS=\frac{1}{\sec(x)-\tan(x)}-\frac{1}{\cos(x)}}

\sf{=\frac{1}{\frac{1}{\cos(x)}-\frac{\sin(x)}{\cos(x)}}-\frac{1}{\cos(x)}}

\sf{=\frac{1}{\frac{1-\sin(x)}{\cos(x)}}-\frac{1}{\cos(x)}}

\sf{=\frac{\cos(x)}{1-\sin(x)}-\frac{1}{\cos(x)}}

\sf{=\frac{\cos^{2}(x)-[1-\sin(x)]}{[1-\sin(x)]\cos(x)}}

\sf{=\frac{[1-\sin^{2}(x)]-[1-\sin(x)]}{[1-\sin(x)]\cos(x)}}

\sf{=\frac{[(1-\sin(x))(1+\sin(x))]-[1-\sin(x)]}{[1-\sin(x)]\cos(x)}}

\sf{=\frac{[(1-\sin(x))][(1+\sin(x)-1)]}{[1-\sin(x)]\cos(x)}}

\sf{=\frac{(1+\sin(x)-1)}{\cos(x)}}

\sf{=\frac{\sin(x)}{\cos(x)}}

\sf{=\tan(x) ......(i)}

\sf{RHS=\frac{1}{\cos(x)}-\frac{1}{\sec(x)+\tan(x)}}

\sf{=\frac{1}{\cos(x)}-\frac{1}{\frac{1}{\cos(x)}+\frac{\sin(x)}{\cos(x)}}}

\sf{=\frac{1}{\cos(x)}-\frac{\cos(x)}{1+\sin(x)}}

\sf{=\frac{[1+\sin(x)]-\cos^{2}(x)}{\cos(x)[1+\sin(x)]}}

\sf{=\frac{[1+\sin(x)]-[1-\sin^{2}(x)]}{\cos(x)[1+\sin(x)]}}

\sf{=\frac{[1+\sin(x)]-[(1-\sin(x))(1+\sin(x))]}{\cos(x)[1+\sin(x)]}}

\sf{=\frac{[1+\sin(x)][1-1+\sin(x)]}{\cos(x)[1+\sin(x)]}}

\sf{=\frac{\sin(x)}{\cos(x)}}

\sf{=\tan(x) ......(ii)}

From (i) & (ii), LHS = RHS... Hence proved

_____________________________________

HOPE IT HELPS ❣️❣️❣️

Similar questions