Math, asked by CallMeAntiVirus, 9 months ago

answer me fast plz need help .. take a short from ur copoy and send me i need the full steps​

Attachments:

Answers

Answered by prashansa15
1

Answer:

I hope it will help you....

Mark me as brainliest... If u understand the process

Attachments:
Answered by MrBhukkad
5

\huge{\mathcal{ \overbrace{ \underbrace{ \pink{ \fbox{ \green{ \blue{A} \pink{n} \red{s} \green{w} \purple{e} \blue{r}}}}}}}}

\bf{(e) \: 2x -  \frac{3}{x}  = 5} \\  \bf{or, \:  \frac{2 {x}^{2} - 3 }{x}  = 5} \\  \bf{or, \: 2 {x}^{2} - 3 = 5x } \\  \bf{or, \: 2 {x}^{2}  - 5x - 3 = 0} \\  \bf{or ,\: 2 {x}^{2} - (6 - 1)x - 3 = 0  } \\  \bf{or ,\: 2 {x}^{2} - 6x + x - 3 = 0 } \\  \bf{or, \: 2x(x - 3) + 1(x - 3) = 0} \\  \bf{or ,\: (x - 3)(2x + 1) = 0} \\  \\  \bf{ \underline{Either}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf{ \underline{Or}} \\ \bf{x - 3 = 0} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:2x + 1 = 0 \\  \bf{or ,\: x = 3} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   or ,\: 2x =  - 1 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf{or, \: x =  \frac{ - 1}{2} }

\bf{(e) \: 2x -  \frac{3}{x}  = 5} \\  \bf{or, \:  \frac{2 {x}^{2} - 3 }{x}  = 5} \\  \bf{or, \: 2 {x}^{2} - 3 = 5x } \\  \bf{or, \: 2 {x}^{2}  - 5x - 3 = 0} \\  \bf{or ,\: 2 {x}^{2} - (6 - 1)x - 3 = 0  } \\  \bf{or ,\: 2 {x}^{2} - 6x + x - 3 = 0 } \\  \bf{or, \: 2x(x - 3) + 1(x - 3) = 0} \\  \bf{or ,\: (x - 3)(2x + 1) = 0} \\  \\  \bf{ \underline{Either}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf{ \underline{Or}} \\ \bf{x - 3 = 0} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:2x + 1 = 0 \\  \bf{or ,\: x = 3} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   or ,\: 2x =  - 1 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf{or, \: x =  \frac{ - 1}{2} }

 \bf{(h) \:  \frac{2x}{5 - 3x} =  \frac{5 + 3x}{8x}  }  \\  \bf{or , \: 16 {x}^{2} = (5 + 3x)(5 - 3x) } \\  \bf{or,\: 16 {x}^{2} =  {5}^{2}  -  {(3x)}^{2}  } \\ \bf{or ,\: 16 {x}^{2} = 25 - 9 {x}^{2}  } \\  \bf{or, \: 16 {x^2 } + 9 {x}^{2}  }  = 25 \\  \bf{or, \: 25 {x}^{2}  = 25} \\  \bf{or ,\:  {x}^{2} =  \frac{25}{25}  } \\  \bf{or, \:  {x}^{2}  = 1} \\  \bf{or ,\: x = ±1}

Similar questions