Math, asked by rajshrigupta12321, 1 month ago

answer me
maths
ch. simultaneous linear equations
solve it by substitution method​

Attachments:

Answers

Answered by mathdude500
7

Given Question :-

Solve the following equations by Method of Substitution

\rm :\longmapsto\:3x - 5y = 4

and

\rm :\longmapsto\:9x - 2y = 7

\large\underline{\sf{Solution-}}

Given lines are

\rm :\longmapsto\:3x - 5y = 4 -  -  - (1)

and

\rm :\longmapsto\:9x - 2y = 7

\rm :\longmapsto\:9x  = 7 + 2y

\bf\implies \:\boxed{ \tt{ \:  \: x = \dfrac{7 + 2y}{9} \:  \: }} -  -  - (2)

On substituting the value of x from equation (2), in equation (1), we get

\rm :\longmapsto\:3\bigg[\dfrac{7 + 2y}{9} \bigg] - 5y = 4

\rm :\longmapsto\:\bigg[\dfrac{7 + 2y}{3} \bigg] - 5y = 4

\rm :\longmapsto\:\dfrac{7 + 2y - 15y}{3}  = 4

\rm :\longmapsto\:\dfrac{7 - 13y}{3}  = 4

\rm :\longmapsto\:7 - 13y = 12

\rm :\longmapsto\:- 13y = 12 - 7

\rm :\longmapsto\:- 13y = 5

\bf\implies \:\boxed{ \tt{ \: y =  -  \:  \frac{5}{13} \:  \: }}

Now, on substituting the value of y, in equation (2), we get

\rm :\longmapsto\:x = \dfrac{1}{9}\bigg[7 + 2 \times \dfrac{ (- 5)}{13} \bigg]

\rm :\longmapsto\:x = \dfrac{1}{9}\bigg[7  -  \dfrac{10}{13} \bigg]

\rm :\longmapsto\:x = \dfrac{1}{9}\bigg[\dfrac{91 - 10}{13} \bigg]

\rm :\longmapsto\:x = \dfrac{1}{9}\bigg[\dfrac{81}{13} \bigg]

\bf\implies \:\boxed{ \tt{ \: x=  \:  \frac{9}{13} \:  \: }}

Answered by syedarfaak
1

Answer:

Step-by-step explanation:

Attachments:
Similar questions