Math, asked by laxmi1783, 9 months ago

Answer me question number 5,6,7 fast please....
please answer me...urgent i will give you Brainliest.......and will get 20 points..

Attachments:

Answers

Answered by Anonymous
78

Step-by-step explanation:

Hey mate plz refer to the Attachment...

Mark as brainlist....

Take Care...

#Indians Fights Against Corona...

Attachments:
Answered by StarrySoul
93

Question 5 :

Verify that :

 \sf(x+y)  ^{ - 1}  \neq \: ( {x}^{ - 1} ) + ( {y}^{ - 1} )

When x = \sf\dfrac{5}{9}

and y = \sf\dfrac{-4}{3}

Pur the values :

 \longrightarrow \sf \: [ \dfrac{5}{9}    + (  \dfrac{ - 4}{3} )] ^{ - 1}  \neq \:  (\dfrac{5}{9} )^{ - 1}  + ( \dfrac{ - 4}{3} )^{ - 1}

 \longrightarrow \sf (\dfrac{5}{9}  -  \dfrac{4}{3}) ^{ - 1}    \neq(  \dfrac{5}{9} ) ^{ - 1}   -  (\dfrac{4}{3} )^{ - 1}

 \longrightarrow \sf( \dfrac{5 - 12}{9})  ^{ - 1}   \neq(  \dfrac{9}{5}   -  \dfrac{3}{4} )

 \longrightarrow \sf( \dfrac{ - 7}{9})  ^{ - 1}   \neq(    \dfrac{36 - 15}{20} )

 \longrightarrow \sf( \dfrac{ - 9}{7})   \neq(    \dfrac{21}{20} )

Hence,Proved!

Question 6 :

Verify that :

 \sf(x \times y)  ^{ - 1}  =  \: ( {x}^{ - 1} )  \times  ( {y}^{ - 1} )

When x = \sf\dfrac{-2}{3}

and y = \sf\dfrac{-3}{4}

Put the values :

 \longrightarrow \sf \: [ \dfrac{ - 2}{3}     \times  (  \dfrac{ - 3}{4} )] ^{ - 1}   = \:  (\dfrac{ - 2}{3} )^{ - 1}   \times ( \dfrac{ - 3}{4} )^{ - 1}

 \longrightarrow \sf \: ( \dfrac{  6}{12} )^{ - 1}  =  \:  (\dfrac{ -3}{2} )   \times ( \dfrac{ -4}{3} )

 \longrightarrow \sf \: \dfrac{  12}{6}  =  \dfrac{ 12}{6}

Hence,Proved!

Question 7 :

i) The number zero has no reciprocal

ii) 1 and -1 are their own reciprocals

iii) If a is the reciprocal of b then b is the reciprocal of a

 \sf \: iv)(  11 \times 5) ^{ - 1}  = ( {11)}^{ - 1}  \times ( \bold {5})^{ - 1}

 \sf \: v) \dfrac{ - 1}{8}  \times   \bold{\dfrac{ - 8}{1} } = 1

 \sf \: vi)  -5 \dfrac{1}{3} = \dfrac{-16}{3}

\sf\therefore \dfrac{-3}{16} \times\:\dfrac{-16}{3} = 1

Similar questions