Math, asked by shifarahman2008, 5 months ago

answer me with solution please​

Attachments:

Answers

Answered by IdyllicAurora
13

\\\;\underbrace{\underline{\sf{Understanding\;the\;Concept}}}

Here the concept of Area of Circle has been used We see that we are given a circular park around which a uniform road is there. Using the radius, we can find the area of park. Then we can add the radius of the park with breadth of road to get the radius of whole circular plot combining the park and road. Then we can subtract the area of circular plot with the area of circular park to get area of road.

Let's do it !!

_____________________________________________

Formula Used :-

\\\;\boxed{\sf{\pink{Area\;of\;Circle\;=\;\bf{\pi r^{2}}}}}

_____________________________________________

Solution :-

Given,

» Radius of circular park = r = 49 m

» Breadth of road = 7 m

» Circular plot = Road + Park

» Radius of circular plot = R = 49 + 7 = 56 m

_____________________________________________

~ For the Area of Park ::

We know that,

\\\;\sf{\rightarrow\;\;Area\;of\;Circle\;=\;\bf{\pi r^{2}}}

By applying values we get

\\\;\sf{\Longrightarrow\;\;Area\;of\;Park\;=\;\bf{\dfrac{22}{7}\:\times\:(49)^{2}}}

\\\;\sf{\Longrightarrow\;\;Area\;of\;Park\;=\;\bf{\dfrac{22}{7}\:\times\:2401}}

\\\;\sf{\Longrightarrow\;\;Area\;of\;Park\;=\;\bf{22\:\times\:343}}

\\\;\bf{\Longrightarrow\;\;Area\;of\;Park\;=\;\bf{\green{7546\;\;cm^{2}}}}

_____________________________________________

~ For the Area of Circular Plot ::

We know that,

\\\;\sf{\rightarrow\;\;Area\;of\;Circle\;=\;\bf{\pi r^{2}}}

By applying values, we get

\\\;\sf{\Longrightarrow\;\;Area\;of\;Circular\;Plot\;=\;\bf{\dfrac{22}{7}\:\times\:(56)^{2}}}

\\\;\sf{\Longrightarrow\;\;Area\;of\;Circular\;Plot\;=\;\bf{\dfrac{22}{7}\:\times\:3136}}

\\\;\sf{\Longrightarrow\;\;Area\;of\;Circular\;Plot\;=\;\bf{22\:\times\:448}}

\\\;\bf{\Longrightarrow\;\;Area\;of\;Circular\;Plot\;=\;\bf{\blue{9856\;\;cm^{2}}}}

_____________________________________________

~ For the Area of Road ::

We know that,

\\\;\sf{\mapsto\;\;\red{Area\;of\;Road\;=\;\bf{Ar.\;of\;Circular\;Plot\;-\;Ar.\;of\;Park}}}

Now by applying values, we get

\\\;\sf{\mapsto\;\;Area\;of\;Road\;=\;\bf{9856\;-\;7546}}

\\\;\sf{\mapsto\;\;\orange{Area\;of\;Road\;=\;\bf{2310\;\;cm^{2}}}}

\\\;\underline{\boxed{\tt{Area\;\:of\;\:Road\;=\;\bf{\purple{2310\;\;cm^{2}}}}}}

_____________________________________________

More to know :-

\\\;\sf{\leadsto\;\;Perimeter\;of\;Circle\;=\;2\pi r}

\\\;\sf{\leadsto\;\;Perimeter\;of\;Semi\:-\;Circle\;=\;\pi r}

\\\;\sf{\leadsto\;\;Area\;of\;Semi\:-\;Circle\;=\;\dfrac{\pi r^{2}}{2}}

\\\;\sf{\leadsto\;\;Perimeter\;of\;Quadrant\;=\;\dfrac{\pi r}{2}}

\\\;\sf{\leadsto\;\;Area\;of\;Quadrant\;=\;\dfrac{\pi r^{2}}{4}}

Attachments:
Answered by mathdude500
6

\huge{AηsωeR} ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf Given= \begin{cases} &\sf{radius \: of \: circular \: park \:  = 49 \: m} \\ &\sf{width \: of \: road \: around \: park = 7 \: m} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf To \:  Find :-   \begin{cases} &\sf{area \: of \: road}  \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf Formula \:  used  - :  \begin{cases} &\sf{Area  \: of \:  circle = \pi \:  {r}^{2} } \\  \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \: \underline{ ❥︎ Step :- 1}

❥︎ Radius of park, r = 49 m

\sf \:  ⟼Area_{(park)} = \pi \:  {r}^{2}

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \: \underline{ ❥︎ Step :- 2}

❥︎ Width of road, h = 7 m

❥︎ So, Radius of circular plot, R = r + h = 49 + 7 = 56 m

\sf \:  ⟼Area_{(plot)} = \pi \:  {R}^{2}

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \: \underline{ ❥︎ Step :- 3}

❥︎ To find the area of road.

\bf \:Area_{(road)} = Area_{(plot)} - Area_{(park)}

\sf \:  ⟼Area_{(road)} =  \pi \:  {R}^{2} - \pi \:  {r}^{2}

\sf \:  ⟼Area_{(road)} =  \pi \:  ({R}^{2} -  {r}^{2} )

\sf \:  ⟼Area_{(road)} =  \pi \:(R + r)(R - r)

\sf \:  ⟼Area_{(road)} =  \dfrac{22}{7}  \times (56 + 49)(56 - 49)

\sf \:  ⟼Area_{(road)} =  \dfrac{22}{ \cancel{7}}  \times (105)( \cancel{7})

\sf \:  ⟼Area_{(road)} =  2310 \:  {m}^{2}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions