Math, asked by sitaram1638, 1 year ago

answer my question fast​

Attachments:

Answers

Answered by Anonymous
2

SOLUTION

Given,

 =  > x =  \frac{1}{2  -  \sqrt{3} }  \\  =  >  \frac{1}{2 -  \sqrt{3} }  \times  \frac{(2 +  \sqrt{3)} }{(2 +  \sqrt{3} )}  \\  =  >  \frac{(2 + \sqrt{3} }{(4 - 3)}  \\  =  > 2 +  \sqrt{3}

Now,

 {x}^{3}  -  {2x}^{2}  - 7x + 5 \\  =  > (2 +  \sqrt{3} ) { }^{3}  - 2(2 +  \sqrt{3} ) {}^{2} - 7(2 +  \sqrt{3}  ) + 5  \\ \\  =  > 2 {}^{3}  + ( \sqrt{3} ) {}^{3}  + 3(4)( \sqrt{3} ) + 3(2)(3) - 2(4 + 3 + 4 \sqrt{3} ) - 14 - 7 \sqrt{3}  + 5  \\ \\  =  > 8 + 3 \sqrt{3}  + 12 \sqrt{3}  + 18 - 8 - 6 - 8 \sqrt{3} - 14 - 7 \sqrt{3}   + 5 \\  \\  =  > 8 + 18   - 8 - 6 - 14 + 5 + 3 \sqrt{3}  + 12 \sqrt{3}  - 8 \sqrt{3}  - 7 \sqrt{ 3}  \\  \\  =  > 3 + 15 \sqrt{3}  - 15 \sqrt{3}  \\  \\  =  > 3

HOPE it helps ✔️

Answered by yattipankaj20
0

12(1+\sqrt{3} )

Step-by-step explanation:

x=\frac{1}{2-\sqrt{3}} \times\frac{2+\sqrt{3} }{2+\sqrt{3}}\\\Rightarrow2+\sqrt{3} \\

p(x)=x^3-2x^2-7x+5\\p(2+\sqrt{3})^3-2(2+\sqrt{3})^2-7(2+\sqrt{3})+5\\ \Rightarrow2^3+(\sqrt{3)}^3+3\times2\times\sqrt{3}(2+\sqrt{3})-2\times2^2+(\sqrt3}^2)+2\times2\times\sqrt3-7(2+\sqrt3)+5\\\\\Rightarrow8+3\sqrt3+6\sqrt3(2+\sqrt3)-2\times4+3+4\sqrt3-14-7\sqrt3+5\\\Rightarrow8+3\sqrt3+18+12\sqrt3-8+3+4\sqrt3-14-7\sqrt3+5\\\Rightarrow3\sqrt3+12\sqrt3+4\sqrt3-7\sqrt3+12\\\Rightarrow12\sqrt3+72\\\Rightarrow12+12\sqrt3\\\Rightarrow12(1+\sqrt3)

Similar questions