Math, asked by gugu9220, 4 hours ago

Answer my question pls don't spam tan²theta = 2tan²alpha + 1 then the value of cos2theta + sin²alpha is?​

Answers

Answered by mathdude500
5

 \green{\large\underline{\sf{Given- }}}

\rm :\longmapsto\: {tan}^{2}\theta  = {2tan}^{2}\alpha  +   1

 \purple{\large\underline{\sf{To\:Find - }}}

\rm :\longmapsto\:cos2\theta  +  {sin}^{2}\alpha

 \red{\large\underline{\sf{Solution-}}}

Given that,

\rm :\longmapsto\: {tan}^{2}\theta  = {2tan}^{2}\alpha  +   1

Consider,

\rm :\longmapsto\:cos2\theta  +  {sin}^{2}\alpha

We know,

\red{ \boxed{ \sf{ \:cos2x =  \frac{1 -  {tan}^{2}x }{1 +  {tan}^{2}x }}}}

So, using this identity, we get

\rm \:  =  \: \dfrac{1 -  {tan}^{2}\theta }{1 +  {tan}^{2} \theta }  +  {sin}^{2}\alpha

As given that

\red{ \boxed{ \sf{ \: {tan}^{2}\theta  = 1 +  {2tan}^{2}\alpha }}}

So, on substituting this value, we get

\rm \:  =  \: \dfrac{1 - (1 +  2{tan}^{2}\alpha ) }{1 +  1 + 2{tan}^{2}\alpha   }  +  {sin}^{2}\alpha

\rm \:  =  \: \dfrac{1 - 1  -  2{tan}^{2}\alpha}{2 + 2{tan}^{2}\alpha   }  +  {sin}^{2}\alpha

\rm \:  =  \: \dfrac{  -  2{tan}^{2}\alpha}{2(1 + {tan}^{2}\alpha) }  +  {sin}^{2}\alpha

We know,

\red{ \boxed{ \sf{ \: {sec}^{2}x -  {tan}^{2}x = 1}}}

So, using this, identity, we get

\rm \:  =  \: \dfrac{ -  {tan}^{2} \alpha }{ {sec}^{2}\alpha }  +  {sin}^{2}\alpha

\rm \:  =  -  \: \dfrac{ {sin}^{2} \alpha }{ {cos}^{2}\alpha  }  \times  {cos}^{2}\alpha   +  {sin}^{2}\alpha

\rm \:  =  \:  -  \:  {sin}^{2}\alpha  +  {sin}^{2}\alpha

\rm \:  =  \: 0

Hence,

\red{\bf\implies \: \:  \:  \boxed{ \sf{ \:\:cos2\theta  +  {sin}^{2}\alpha  = 0 \:  \:  \:  \: }}}

Additional Information :-

\red{ \boxed{ \sf{ \:sin2x = 2sinxcosx}}}

\red{ \boxed{ \sf{ \:sin2x =  \frac{2tanx}{1 +  {tan}^{2}x } }}}

\red{ \boxed{ \sf{ \:cos2x = 1 -  {2sin}^{2}x =  {2cos}^{2}x - 1 \:  =  \:  {cos}^{2}x -  {sin}^{2}x}}}

\red{ \boxed{ \sf{ \:tan2x =  \frac{2tanx}{1 -  {tan}^{2} x}}}}

\red{ \boxed{ \sf{ \:sin3x = 3sinx -  {4sin}^{3}x}}}

\red{ \boxed{ \sf{ \:cos3x =  {4cos}^{3}x - 3cosx}}}

Similar questions